Keywords: bounded lattices; uninorms; closure operators; interior operators
@article{10_14736_kyb_2021_2_0372,
author = {Hua, Xiu-Juan and Zhang, Hua-Peng and Ouyang, Yao},
title = {Note on "construction of uninorms on bounded lattices"},
journal = {Kybernetika},
pages = {372--382},
year = {2021},
volume = {57},
number = {2},
doi = {10.14736/kyb-2021-2-0372},
mrnumber = {4273581},
zbl = {07396272},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0372/}
}
TY - JOUR AU - Hua, Xiu-Juan AU - Zhang, Hua-Peng AU - Ouyang, Yao TI - Note on "construction of uninorms on bounded lattices" JO - Kybernetika PY - 2021 SP - 372 EP - 382 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0372/ DO - 10.14736/kyb-2021-2-0372 LA - en ID - 10_14736_kyb_2021_2_0372 ER -
Hua, Xiu-Juan; Zhang, Hua-Peng; Ouyang, Yao. Note on "construction of uninorms on bounded lattices". Kybernetika, Tome 57 (2021) no. 2, pp. 372-382. doi: 10.14736/kyb-2021-2-0372
[1] Birkhoff, G.: Lattice Theory. AMS Colloquium Publishers, Providence,Rhode Island 1973. | MR | Zbl
[2] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 394-417. | DOI | MR
[3] D.Çaylı, G., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367 - 368 (2016), 221-231. | DOI | MR
[4] Dan, Y. X., Hu, B. Q.: A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94. | DOI | MR
[5] Baets, B. De, Mesiar, R.: Triangular norm on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. | DOI | MR
[6] Cooman, G. De, Kerre, E. E.: Order norms on bounded partially ordered sets. J. Fuzzy Math. 2 (1994), 281-310. | MR | Zbl
[7] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators. In: Proc. EUFIT '96, Aachen 1996, pp. 22-26.
[8] Everett, C. J.: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514-525. | DOI | MR
[9] Ji, W.: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55. | DOI | MR
[10] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. | DOI | MR
[11] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106. | DOI | MR
[12] Schweizer, B., Sklar, A.: Statistical metric space. Pac. J. Math. 10 (1960), 313-334. | DOI | MR
[13] Xie, A. F., Li, S. J.: On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104. | DOI | MR
[14] Yager, R. R., Rybalov, A.: Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. | DOI | MR
Cité par Sources :