Keywords: t-norm; t-conorm; ordinal sum; bounded lattice
@article{10_14736_kyb_2021_2_0352,
author = {A\c{s}{\i}c{\i}, Emel},
title = {On the constructions of t-norms and t-conorms on some special classes of bounded lattices},
journal = {Kybernetika},
pages = {352--371},
year = {2021},
volume = {57},
number = {2},
doi = {10.14736/kyb-2021-2-0352},
mrnumber = {4273580},
zbl = {07396271},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0352/}
}
TY - JOUR AU - Aşıcı, Emel TI - On the constructions of t-norms and t-conorms on some special classes of bounded lattices JO - Kybernetika PY - 2021 SP - 352 EP - 371 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0352/ DO - 10.14736/kyb-2021-2-0352 LA - en ID - 10_14736_kyb_2021_2_0352 ER -
Aşıcı, Emel. On the constructions of t-norms and t-conorms on some special classes of bounded lattices. Kybernetika, Tome 57 (2021) no. 2, pp. 352-371. doi: 10.14736/kyb-2021-2-0352
[1] Aşıcı, E.: An extension of the ordering based on nullnorms. Kybernetika 55 (2019), 217-232. | DOI | MR
[2] Aşıcı, E.: The equivalence of uninorms induced by the $ U $-partial order. Hacet. J. Math. Stat. 357 (2019), 2-26. | DOI | MR
[3] Aşıcı, E., Mesiar, R.: New constructions of triangular norms and triangular conorms on an arbitrary bounded lattice. Int. J. Gen. Systems 49 (2020), 143-160. | DOI | MR
[4] Aşıcı, E., Mesiar, R.: Alternative approaches to obtain t-norms and t-conorms on bounded lattices. Iran. J. Fuzzy Syst. 17 (2020), 121-138. | DOI | MR
[5] Aşıcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85. | DOI | MR
[6] Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inform. Sci. 267 (2014), 323-333. | DOI | MR
[7] Bedregal, B., Reiser, R., Bustince, H., Lopez-Molina, C., Torra, V.: Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms. Inform. Sci. 255 (2014), 1, 82-99. | DOI | MR
[8] Birkhoff, G.: Lattice Theory. Third edition. Providence, 1967. | MR
[9] Clifford, A.: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631-646. | DOI | MR
[10] Çaylı, G. D.: Construction methods for idempotent nullnorms on bounded lattices. Appl. Math. Comput. 366 (2020). | DOI | MR
[11] Çaylı, G. D.: Some methods to obtain t-norms and t-conorms on bounded lattices. Kybernetika 55 (2019), 273-294. | DOI | MR
[12] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inform. Sci. 488 (2019), 111-139. | DOI | MR
[13] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. | DOI | MR
[14] Dan, Y., Hu, B. Q., Qiao, J.: New construction of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 395 (2020), 40-70. | DOI | MR
[15] Dvořák, A., Holčapek, M.: New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inform. Sci. 515 (2020), 116-131. | DOI | MR
[16] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30 (2015), 807-817. | DOI
[17] Goguen, J. A.: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174. | DOI | MR
[18] İnce, M. A., Karaçal, F., Mesiar, R.: Medians and nullnorms on bounded lattices. Fuzzy Sets Syst. 289 (2016), 74-81. | DOI | MR
[19] Karaçal, F., İnce, M. A., Mesiar, R.: Nullnorms on bounded lattices. Inform. Sci. 325 (2015), 227-235. | DOI | MR
[20] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl
[21] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88. | DOI | MR
[22] Mostert, P. S., Shields, A. L.: On the Structure of Semigroups on a Compact Manifold With Boundary. Ann. Math., II. Ser. 65 (1957), 117-143. | DOI | MR
[23] Ouyang, Y., Zhang, H-P., Baets, B. D.: Ordinal sums of triangular norms on a bounded lattice. Fuzzy Sets Syst. 408 (2021), 1-12. | DOI | MR
[24] Rodriguez, R. M., Martinez, L., Herrera, F.: Fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20 (2012), 2, 109-119. | DOI
[25] Rodriguez, R. M., Martinez, L., Herrera, F.: A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Inform. Sci. 241 (2013), 28-42. | DOI | MR
[26] Rodriguez, R. M., Martinez, L., Torra, V., Xu, Z. S., Herrera, F.: Hesitant fuzzy sets: state of the art and future directions. Int. J. Intell. Syst. 29 (2014), 6, 495-524. | DOI
[27] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 325 (2006), 1403-1416. | MR | Zbl
[28] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. | DOI | MR | Zbl
[29] Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25 (2010), 529-539. | DOI
Cité par Sources :