On the constructions of t-norms and t-conorms on some special classes of bounded lattices
Kybernetika, Tome 57 (2021) no. 2, pp. 352-371
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on an appropriate bounded lattice, respectively. And we provide some illustrative examples.
Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on an appropriate bounded lattice, respectively. And we provide some illustrative examples.
DOI : 10.14736/kyb-2021-2-0352
Classification : 03B52, 03E72
Keywords: t-norm; t-conorm; ordinal sum; bounded lattice
@article{10_14736_kyb_2021_2_0352,
     author = {A\c{s}{\i}c{\i}, Emel},
     title = {On the constructions of t-norms and t-conorms on some special classes of bounded lattices},
     journal = {Kybernetika},
     pages = {352--371},
     year = {2021},
     volume = {57},
     number = {2},
     doi = {10.14736/kyb-2021-2-0352},
     mrnumber = {4273580},
     zbl = {07396271},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0352/}
}
TY  - JOUR
AU  - Aşıcı, Emel
TI  - On the constructions of t-norms and t-conorms on some special classes of bounded lattices
JO  - Kybernetika
PY  - 2021
SP  - 352
EP  - 371
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0352/
DO  - 10.14736/kyb-2021-2-0352
LA  - en
ID  - 10_14736_kyb_2021_2_0352
ER  - 
%0 Journal Article
%A Aşıcı, Emel
%T On the constructions of t-norms and t-conorms on some special classes of bounded lattices
%J Kybernetika
%D 2021
%P 352-371
%V 57
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0352/
%R 10.14736/kyb-2021-2-0352
%G en
%F 10_14736_kyb_2021_2_0352
Aşıcı, Emel. On the constructions of t-norms and t-conorms on some special classes of bounded lattices. Kybernetika, Tome 57 (2021) no. 2, pp. 352-371. doi: 10.14736/kyb-2021-2-0352

[1] Aşıcı, E.: An extension of the ordering based on nullnorms. Kybernetika 55 (2019), 217-232. | DOI | MR

[2] Aşıcı, E.: The equivalence of uninorms induced by the $ U $-partial order. Hacet. J. Math. Stat. 357 (2019), 2-26. | DOI | MR

[3] Aşıcı, E., Mesiar, R.: New constructions of triangular norms and triangular conorms on an arbitrary bounded lattice. Int. J. Gen. Systems 49 (2020), 143-160. | DOI | MR

[4] Aşıcı, E., Mesiar, R.: Alternative approaches to obtain t-norms and t-conorms on bounded lattices. Iran. J. Fuzzy Syst. 17 (2020), 121-138. | DOI | MR

[5] Aşıcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85. | DOI | MR

[6] Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inform. Sci. 267 (2014), 323-333. | DOI | MR

[7] Bedregal, B., Reiser, R., Bustince, H., Lopez-Molina, C., Torra, V.: Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms. Inform. Sci. 255 (2014), 1, 82-99. | DOI | MR

[8] Birkhoff, G.: Lattice Theory. Third edition. Providence, 1967. | MR

[9] Clifford, A.: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631-646. | DOI | MR

[10] Çaylı, G. D.: Construction methods for idempotent nullnorms on bounded lattices. Appl. Math. Comput. 366 (2020). | DOI | MR

[11] Çaylı, G. D.: Some methods to obtain t-norms and t-conorms on bounded lattices. Kybernetika 55 (2019), 273-294. | DOI | MR

[12] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inform. Sci. 488 (2019), 111-139. | DOI | MR

[13] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. | DOI | MR

[14] Dan, Y., Hu, B. Q., Qiao, J.: New construction of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 395 (2020), 40-70. | DOI | MR

[15] Dvořák, A., Holčapek, M.: New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inform. Sci. 515 (2020), 116-131. | DOI | MR

[16] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30 (2015), 807-817. | DOI

[17] Goguen, J. A.: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174. | DOI | MR

[18] İnce, M. A., Karaçal, F., Mesiar, R.: Medians and nullnorms on bounded lattices. Fuzzy Sets Syst. 289 (2016), 74-81. | DOI | MR

[19] Karaçal, F., İnce, M. A., Mesiar, R.: Nullnorms on bounded lattices. Inform. Sci. 325 (2015), 227-235. | DOI | MR

[20] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl

[21] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88. | DOI | MR

[22] Mostert, P. S., Shields, A. L.: On the Structure of Semigroups on a Compact Manifold With Boundary. Ann. Math., II. Ser. 65 (1957), 117-143. | DOI | MR

[23] Ouyang, Y., Zhang, H-P., Baets, B. D.: Ordinal sums of triangular norms on a bounded lattice. Fuzzy Sets Syst. 408 (2021), 1-12. | DOI | MR

[24] Rodriguez, R. M., Martinez, L., Herrera, F.: Fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20 (2012), 2, 109-119. | DOI

[25] Rodriguez, R. M., Martinez, L., Herrera, F.: A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Inform. Sci. 241 (2013), 28-42. | DOI | MR

[26] Rodriguez, R. M., Martinez, L., Torra, V., Xu, Z. S., Herrera, F.: Hesitant fuzzy sets: state of the art and future directions. Int. J. Intell. Syst. 29 (2014), 6, 495-524. | DOI

[27] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 325 (2006), 1403-1416. | MR | Zbl

[28] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. | DOI | MR | Zbl

[29] Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25 (2010), 529-539. | DOI

Cité par Sources :