Some notes on the category of fuzzy implications on bounded lattices
Kybernetika, Tome 57 (2021) no. 2, pp. 332-351
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we introduce the product, coproduct, equalizer and coequalizer notions on the category of fuzzy implications on a bounded lattice that results in the existence of the limit, pullback, colimit and pushout. Also isomorphism, monic and epic are introduced in this category. Then a subcategory of this category, called the skeleton, is studied. Where none of any two fuzzy implications are $\Phi$-conjugate.
In this paper, we introduce the product, coproduct, equalizer and coequalizer notions on the category of fuzzy implications on a bounded lattice that results in the existence of the limit, pullback, colimit and pushout. Also isomorphism, monic and epic are introduced in this category. Then a subcategory of this category, called the skeleton, is studied. Where none of any two fuzzy implications are $\Phi$-conjugate.
DOI : 10.14736/kyb-2021-2-0332
Classification : 03B52, 03E72
Keywords: fuzzy implication; t-norm; category; skeleton of category
@article{10_14736_kyb_2021_2_0332,
     author = {Yousefi, Amin and Mashinchi, Mashaallah and Mesiar, Radko},
     title = {Some notes on the category of fuzzy implications on bounded lattices},
     journal = {Kybernetika},
     pages = {332--351},
     year = {2021},
     volume = {57},
     number = {2},
     doi = {10.14736/kyb-2021-2-0332},
     mrnumber = {4273579},
     zbl = {07396270},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0332/}
}
TY  - JOUR
AU  - Yousefi, Amin
AU  - Mashinchi, Mashaallah
AU  - Mesiar, Radko
TI  - Some notes on the category of fuzzy implications on bounded lattices
JO  - Kybernetika
PY  - 2021
SP  - 332
EP  - 351
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0332/
DO  - 10.14736/kyb-2021-2-0332
LA  - en
ID  - 10_14736_kyb_2021_2_0332
ER  - 
%0 Journal Article
%A Yousefi, Amin
%A Mashinchi, Mashaallah
%A Mesiar, Radko
%T Some notes on the category of fuzzy implications on bounded lattices
%J Kybernetika
%D 2021
%P 332-351
%V 57
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0332/
%R 10.14736/kyb-2021-2-0332
%G en
%F 10_14736_kyb_2021_2_0332
Yousefi, Amin; Mashinchi, Mashaallah; Mesiar, Radko. Some notes on the category of fuzzy implications on bounded lattices. Kybernetika, Tome 57 (2021) no. 2, pp. 332-351. doi: 10.14736/kyb-2021-2-0332

[1] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories: The Joy of Cats. Wiley, 1990. | MR

[2] Baczynski, M.: On the applications of fuzzy implication functions. In: Soft Computing Applications, Springer, Berlin Heidelberg 2013, pp. 9-10. | DOI

[3] Baczynski, M., Beliakov, G., Sola, H. B., Pradera, A.: Advances in Fuzzy Implication Functions. Springer, Berlin Heidelberg 2013.

[4] Baczynski, M., Jayaram, B.: Fuzzy Implications. Springer, Berlin Heidelberg 2008.

[5] Bedregal, B. C.: Bounded lattice t-norms as an interval category. In: International Workshop on Logic, Language, Information, and Computation, Springer 2007, pp. 26-37. | MR

[6] Bělohlávek, R.: Granulation and granularity via conceptual structures: A perspective from the point of view of fuzzy concept lattices. In: Data mining, rough sets and granular computing, Springer, Berlin Heidelberg 2002, pp. 265-289. | DOI

[7] Birkhoff, G.: Lattice Theory. American Mathematical Society, Rhode Island 1940. | MR | Zbl

[8] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press 2002. | MR

[9] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets and Systems 104 (1999),1, 61-75. | DOI | MR

[10] Baets, B. De, Mesiar, R.: Discrete Triangular Norms. In:Topological and Algebraic Structures in Fuzzy Sets, Springer 2003, pp. 389-400. | DOI | MR

[11] Hájek, P.: Metamathematics of Fuzzy Logic. Volume 4, Springer Science and Business Media, 2013. | MR | Zbl

[12] Klement, E P., Mesiar, R., Pap, E.: Triangular Norms. Volume 8, Springer Science and Business Media, 2013. | MR | Zbl

[13] Lee, C. C.: Fuzzy logic in control systems: fuzzy logic controller. IEEE Trans. Systems Man Cybernet. 20 (1990), 2, 404-418. | DOI | MR

[14] Mayor, G., Suñer, J., Torrens, J.: Operations on Finite Settings: from Triangular Norms to Copulas. In: Copulas and Dependence Models with Applications, Springer 2017, pp. 157-170. | DOI | MR

[15] Nguyen, H. T., Walker, E. A.: A first Course in Fuzzy Logic. Chapman and Hall/CRC Press 2006. | MR

[16] Pierce, B. C., Garey, M. R., Meyer, A.: Basic Category Theory for Computer Scientists. MIT Press 1991. | MR

[17] Togai, M., Watanabe, H.: Expert system on a chip: An engine for real-time approximate reasoning. In: Proc. ACM SIGART international symposium on Methodologies for intelligent systems, ACM 1986, pp. 147-154.

[18] Yousefi, A., Mashinchi, M.: Categories of fuzzy implications and R-implications on bounded lattices. In: 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), IEEE 2018, pp. 40-42. | DOI

[19] Yousefi, A., Mashinchi, M.: Counting T-norms and R-implications on Bounded Lattices. In: 9th National Conference on Mathematics of Payame Noor University, On CD 2019, pp. 726-731.

[20] Yu, Y., Mordeson, J. N., Cheng, S. C.: Elements of L-algebra. Lecture Notes in Fuzzy Mathematics and Computer Science, Creighton University, Omaha 1994. | MR

[21] Zadeh, L. A.: A computational approach to fuzzy quantifiers in natural languages. Computers Math. Appl. 9, Elsevier (1983), 149-184. | DOI | MR | Zbl

Cité par Sources :