Keywords: incomplete information; sequential game; risk sensitive; turn selection process
@article{10_14736_kyb_2021_2_0312,
author = {Becerril-Borja, Rub\'en and Montes-de-Oca, Ra\'ul},
title = {Incomplete information and risk sensitive analysis of sequential games without a predetermined order of turns},
journal = {Kybernetika},
pages = {312--331},
year = {2021},
volume = {57},
number = {2},
doi = {10.14736/kyb-2021-2-0312},
mrnumber = {4273578},
zbl = {07396269},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0312/}
}
TY - JOUR AU - Becerril-Borja, Rubén AU - Montes-de-Oca, Raúl TI - Incomplete information and risk sensitive analysis of sequential games without a predetermined order of turns JO - Kybernetika PY - 2021 SP - 312 EP - 331 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0312/ DO - 10.14736/kyb-2021-2-0312 LA - en ID - 10_14736_kyb_2021_2_0312 ER -
%0 Journal Article %A Becerril-Borja, Rubén %A Montes-de-Oca, Raúl %T Incomplete information and risk sensitive analysis of sequential games without a predetermined order of turns %J Kybernetika %D 2021 %P 312-331 %V 57 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0312/ %R 10.14736/kyb-2021-2-0312 %G en %F 10_14736_kyb_2021_2_0312
Becerril-Borja, Rubén; Montes-de-Oca, Raúl. Incomplete information and risk sensitive analysis of sequential games without a predetermined order of turns. Kybernetika, Tome 57 (2021) no. 2, pp. 312-331. doi: 10.14736/kyb-2021-2-0312
[1] Aliprantis, C. D., Border, K. C.: Infinite Dimensional Analysis. Springer, Berlin Heidelberg 2006. | MR | Zbl
[2] Arrow, K. J.: Aspects of the theory of risk-bearing. In: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago 1971, pp. 90-109. | MR
[3] Basu, A., Ghosh, M. K.: Nonzero-sum risk-sensitive stochastic games on a countable state space. Math. Oper. Res. 43 (2018), 516-532. | DOI | MR
[4] Bäuerle, N., Rieder, U.: Zero-sum risk-sensitive stochastic games. Stoch. Processes Appl. 12 (2017), 2, 622-642. | DOI | MR
[5] Becerril-Borja, R., Montes-de-Oca, R.: A family of models for finite sequential games without a predetermined order of turns. In: Operations Research and Enterprise Systems (B. Vitoriano, G. H. Parlier, eds.), Springer International Publishing, Cham 2017, 35-51. | DOI
[6] Border, K. C.: Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge 1985. | MR
[7] Eeckhoudt, L., Gollier, C., Schlesinger, H.: Economic and Financial Decisions under Risk. Princeton University Press, Princeton 2005. | DOI
[8] Fleming, W. H., McEneaney, W. M.: Risk sensitive optimal control and differential games. In: Stochastic Theory and Adaptive Control. Lecture Notes in Control and Information Sciences (T. E. Duncan and B. Pasik-Duncan, eds.), Springer, Berlin Heidelberg 1992, pp. 185-197. | MR
[9] Howard, R. A., Matheson, J. E.: Risk sensitive Markov decision processes. Management Sci. 18 (1972), 356-369. | DOI | MR
[10] James, M. R., Baras, J., Elliott, R. J.: Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems. IEEE Trans. Automat. Control 39 (1994), 780-792. | DOI | MR
[11] Kakutani, S.: A generalization of Brouwer's fixed point theorem. Duke Math. J. 8 (1942), 457-459. | DOI | MR
[12] Klompstra, M. B.: Nash equilibria in risk-sensitive dynamic games. IEEE Trans. Automat. Control 45 (2000), 1397-1401. | DOI | MR
[13] Nowak, A. S.: Notes on risk-sensitive Nash equilibria. In: Advances in Dynamic Games: Applications to Economics, Finance, Optimization and Stochastic Control (A. S. Nowak and K. Szajowski, eds.), Birkhäuser, Boston 2005, pp. 95-109. | MR
[14] Pratt, J. W.: Risk aversion in the small and in the large. Econometrica 32 (1964), 122-136. | DOI | Zbl
[15] Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge 2008.
[16] Sladký, K.: Risk sensitive average optimality in Markov decision processes. Kybernetika 54 (2018), 1218-1230. | DOI | MR
[17] Tadelis, S.: Game Theory: An Introduction. Princeton University Press, Princeton 2013. | MR
Cité par Sources :