Keywords: distributed computation of matrix equation; multi-agent system; sublinear convergence; stochastic mirror descent algorithm
@article{10_14736_kyb_2021_2_0256,
author = {Wang, Yinghui and Cheng, Songsong},
title = {A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system},
journal = {Kybernetika},
pages = {256--271},
year = {2021},
volume = {57},
number = {2},
doi = {10.14736/kyb-2021-2-0256},
mrnumber = {4273575},
zbl = {07396266},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0256/}
}
TY - JOUR AU - Wang, Yinghui AU - Cheng, Songsong TI - A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system JO - Kybernetika PY - 2021 SP - 256 EP - 271 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0256/ DO - 10.14736/kyb-2021-2-0256 LA - en ID - 10_14736_kyb_2021_2_0256 ER -
%0 Journal Article %A Wang, Yinghui %A Cheng, Songsong %T A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system %J Kybernetika %D 2021 %P 256-271 %V 57 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0256/ %R 10.14736/kyb-2021-2-0256 %G en %F 10_14736_kyb_2021_2_0256
Wang, Yinghui; Cheng, Songsong. A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system. Kybernetika, Tome 57 (2021) no. 2, pp. 256-271. doi: 10.14736/kyb-2021-2-0256
[1] Bregman, L. M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7 (1967), 200-217. | DOI | MR
[2] Chen, G., Zeng, X., Hong, Y.: Distributed optimisation design for solving the Stein equation with constraints. IET Control Theory Appl. 13 (2019), 2492-2499. | DOI
[3] Cheng, S., Liang, S.: Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate. Kybernetika 56 (2020), 559-577. | DOI | MR
[4] Deng, W., Zeng, X., Hong, Y.: Distributed computation for solving the Sylvester equation based on optimization. IEEE Control Systems Lett. 4 (2019), 414-419. | DOI | MR
[5] Gholami, M. R., Jansson, M., al., E. G. Ström et: Diffusion estimation over cooperative multi-agent networks with missing data. IEEE Trans. Signal Inform. Process. over Networks 2 (2016), 27-289. | DOI | MR
[6] Lan, G., Lee, S., Zhou, Y.: Communication-efficient algorithms for decentralized and stochastic optimization. Math. Programm. 180 (2020), 237-284. | DOI | MR
[7] Lei, J., Shanbhag, U. V., al., J. S. Pang et: On synchronous, asynchronous, and randomized best-response schemes for stochastic Nash games. Math. Oper. Res. 45 (2020), 157-190. | DOI | MR
[8] Liu, J., Morse, A. S., Nedic, A., a., et: Exponential convergence of a distributed algorithm for solving linear algebraic equations. Automatica 83 (2017), 37-46. | DOI | MR
[9] Mou, S., Liu, J., Morse, A. S.: A distributed algorithm for solving a linear algebraic equation. IEEE Trans. Automat. Control 60 (2015), 2863-2878. | DOI | MR
[10] Ram, S. S., Nedic, A., Veeravalli, V. V.: Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. 147 (2010), 516-545. | DOI | MR
[11] Shi, G., Anderson, B. D. O., Helmke, U.: Network flows that solve linear equations. IEEE Trans. Automat. Control 62 (2016), 2659-2674. | DOI | MR
[12] Wang, Y., Lin, P., Hong, Y.: Distributed regression estimation with incomplete data in multi-agent networks. Science China Inform. Sci. 61 (2018), 092202. | DOI | MR
[13] Wang, Y., Lin, P., Qin, H.: Distributed classification learning based on nonlinear vector support machines for switching networks. Kybernetika 53 (2017), 595-611. | DOI | MR
[14] Wang, Y., Zhao, W., al., Y. Hong et: Distributed subgradient-free stochastic optimization algorithm for nonsmooth convex functions over time-varying networks. SIAM J. Control Optim. 57 (2019), 2821-2842. | DOI | MR
[15] Yuan, D., Hong, Y., al., D. W. C. Ho et: Optimal distributed stochastic mirror descent for strongly convex optimization. Automatica 90(2018), 196-203. | DOI | MR
[16] Yuan, D., Hong, Y., al., D. W. C. Ho et: Distributed mirror descent for online composite optimization. IEEE Trans. Automat. Control (2020). | MR
[17] Zeng, X., Liang, S., al., Y. Hong et: Distributed computation of linear matrix equations: An optimization perspective. IEEE Trans. Automat. Control 64 (2018), 1858-1873. | DOI | MR
Cité par Sources :