A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system
Kybernetika, Tome 57 (2021) no. 2, pp. 256-271
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider a distributed stochastic computation of $AXB=C$ with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of $AXB=C$, we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm. Moreover, a numerical example is also given to illustrate the effectiveness of the proposed algorithm.
In this paper, we consider a distributed stochastic computation of $AXB=C$ with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of $AXB=C$, we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm. Moreover, a numerical example is also given to illustrate the effectiveness of the proposed algorithm.
DOI : 10.14736/kyb-2021-2-0256
Classification : 68M15, 93A14
Keywords: distributed computation of matrix equation; multi-agent system; sublinear convergence; stochastic mirror descent algorithm
@article{10_14736_kyb_2021_2_0256,
     author = {Wang, Yinghui and Cheng, Songsong},
     title = {A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system},
     journal = {Kybernetika},
     pages = {256--271},
     year = {2021},
     volume = {57},
     number = {2},
     doi = {10.14736/kyb-2021-2-0256},
     mrnumber = {4273575},
     zbl = {07396266},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0256/}
}
TY  - JOUR
AU  - Wang, Yinghui
AU  - Cheng, Songsong
TI  - A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system
JO  - Kybernetika
PY  - 2021
SP  - 256
EP  - 271
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0256/
DO  - 10.14736/kyb-2021-2-0256
LA  - en
ID  - 10_14736_kyb_2021_2_0256
ER  - 
%0 Journal Article
%A Wang, Yinghui
%A Cheng, Songsong
%T A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system
%J Kybernetika
%D 2021
%P 256-271
%V 57
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0256/
%R 10.14736/kyb-2021-2-0256
%G en
%F 10_14736_kyb_2021_2_0256
Wang, Yinghui; Cheng, Songsong. A stochastic mirror-descent algorithm for solving $AXB=C$ over an multi-agent system. Kybernetika, Tome 57 (2021) no. 2, pp. 256-271. doi: 10.14736/kyb-2021-2-0256

[1] Bregman, L. M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7 (1967), 200-217. | DOI | MR

[2] Chen, G., Zeng, X., Hong, Y.: Distributed optimisation design for solving the Stein equation with constraints. IET Control Theory Appl. 13 (2019), 2492-2499. | DOI

[3] Cheng, S., Liang, S.: Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate. Kybernetika 56 (2020), 559-577. | DOI | MR

[4] Deng, W., Zeng, X., Hong, Y.: Distributed computation for solving the Sylvester equation based on optimization. IEEE Control Systems Lett. 4 (2019), 414-419. | DOI | MR

[5] Gholami, M. R., Jansson, M., al., E. G. Ström et: Diffusion estimation over cooperative multi-agent networks with missing data. IEEE Trans. Signal Inform. Process. over Networks 2 (2016), 27-289. | DOI | MR

[6] Lan, G., Lee, S., Zhou, Y.: Communication-efficient algorithms for decentralized and stochastic optimization. Math. Programm. 180 (2020), 237-284. | DOI | MR

[7] Lei, J., Shanbhag, U. V., al., J. S. Pang et: On synchronous, asynchronous, and randomized best-response schemes for stochastic Nash games. Math. Oper. Res. 45 (2020), 157-190. | DOI | MR

[8] Liu, J., Morse, A. S., Nedic, A., a., et: Exponential convergence of a distributed algorithm for solving linear algebraic equations. Automatica 83 (2017), 37-46. | DOI | MR

[9] Mou, S., Liu, J., Morse, A. S.: A distributed algorithm for solving a linear algebraic equation. IEEE Trans. Automat. Control 60 (2015), 2863-2878. | DOI | MR

[10] Ram, S. S., Nedic, A., Veeravalli, V. V.: Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. 147 (2010), 516-545. | DOI | MR

[11] Shi, G., Anderson, B. D. O., Helmke, U.: Network flows that solve linear equations. IEEE Trans. Automat. Control 62 (2016), 2659-2674. | DOI | MR

[12] Wang, Y., Lin, P., Hong, Y.: Distributed regression estimation with incomplete data in multi-agent networks. Science China Inform. Sci. 61 (2018), 092202. | DOI | MR

[13] Wang, Y., Lin, P., Qin, H.: Distributed classification learning based on nonlinear vector support machines for switching networks. Kybernetika 53 (2017), 595-611. | DOI | MR

[14] Wang, Y., Zhao, W., al., Y. Hong et: Distributed subgradient-free stochastic optimization algorithm for nonsmooth convex functions over time-varying networks. SIAM J. Control Optim. 57 (2019), 2821-2842. | DOI | MR

[15] Yuan, D., Hong, Y., al., D. W. C. Ho et: Optimal distributed stochastic mirror descent for strongly convex optimization. Automatica 90(2018), 196-203. | DOI | MR

[16] Yuan, D., Hong, Y., al., D. W. C. Ho et: Distributed mirror descent for online composite optimization. IEEE Trans. Automat. Control (2020). | MR

[17] Zeng, X., Liang, S., al., Y. Hong et: Distributed computation of linear matrix equations: An optimization perspective. IEEE Trans. Automat. Control 64 (2018), 1858-1873. | DOI | MR

Cité par Sources :