Keywords: stabilizing control; mixed sensitivity; pole placement; reference tracking; linear systems; robust control; 2DOF control configuration
@article{10_14736_kyb_2021_2_0193,
author = {Flores, Miguel A. and Galindo, Ren\'e},
title = {Pole placement and mixed sensitivity of {LTI} {MIMO} systems having controlled outputs different from measurements},
journal = {Kybernetika},
pages = {193--219},
year = {2021},
volume = {57},
number = {2},
doi = {10.14736/kyb-2021-2-0193},
mrnumber = {4273572},
zbl = {07396263},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0193/}
}
TY - JOUR AU - Flores, Miguel A. AU - Galindo, René TI - Pole placement and mixed sensitivity of LTI MIMO systems having controlled outputs different from measurements JO - Kybernetika PY - 2021 SP - 193 EP - 219 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0193/ DO - 10.14736/kyb-2021-2-0193 LA - en ID - 10_14736_kyb_2021_2_0193 ER -
%0 Journal Article %A Flores, Miguel A. %A Galindo, René %T Pole placement and mixed sensitivity of LTI MIMO systems having controlled outputs different from measurements %J Kybernetika %D 2021 %P 193-219 %V 57 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0193/ %R 10.14736/kyb-2021-2-0193 %G en %F 10_14736_kyb_2021_2_0193
Flores, Miguel A.; Galindo, René. Pole placement and mixed sensitivity of LTI MIMO systems having controlled outputs different from measurements. Kybernetika, Tome 57 (2021) no. 2, pp. 193-219. doi: 10.14736/kyb-2021-2-0193
[1] Chilali, M., Gahinet, P: $\mathcal{H_{\infty}}$ design with pole placement constraints: An {LMI} approach. IEEE Trans. Automat. Control 41 (1996), 358-367. | DOI | MR
[2] Desoer, C. A.: Decoupling linear multiinput multioutput plants by dynamic output feedback: An algebraic theory. IEEE Trans. Automat. Control 31 (1986), 744-750. | DOI | MR
[3] Doyle, J. C., Glover, K., Khargonekar, P., Francis, B. A.: State-space solutions to standard $\mathcal{H}_{2}$ and $\mathcal{H}_{\infty}$ control problems. IEEE Trans. Automat. Control 34 (1989), 831-847. | DOI | MR
[4] Folly, K. A.: A Comparison of Two Methods for Preventing Pole-zero Cancellation in ${H}_{\infty}$ Power System Controller Design. IEEE Lausanne Power Tech (2007).
[5] Flores, M. A., Galindo, R.: Robust control for outputs of interest different from the measured outputs, based on the parameterization of stabilizing controllers. Control robusto para salidas de interés diferentes a las medidas, basado en la parametrización de controladores estabilizantes. In: {XVI} Latinamerican Congress of Automatic Control, {CLCA} 2014.
[6] Gahinet, P., Apkarian, P.: A linear matrix inequality approach to ${H}_{\infty}$ control. Int. J. Robust Nonlinear Control 4 (1994), 421-448. | DOI | MR
[7] Galindo, R.: Parameterization of all stable controllers stabilizing full state information systems and mixed sensitivity. In: Proc. The Institution of Mechanical Engineers Part {I}: J. Systems Control Engrg. 223 (2009), 957-971. | DOI
[8] Galindo, R.: Input/output decoupling of square linear systems by dynamic two-parameter stabilizing control. Asian J. Control 18 (2016), 2310-2316. | DOI | MR
[9] Galindo, R., Conejo, C. D.: A Parametrization of all one parameter stabilizing controllers and a mixed sensitivity problem, for square systems. In: International Conference on Electrical Engineering, Computing Science and Automatic Control (012, pp. 1-6.
[10] Galindo, R., Malabre, M., Kučera, V.: Mixed sensitivity $\mathcal{H}_{\infty}$ control for {LTI} systems. IEEE Conf. Decision Control 2 (2004), 1331-1336.
[11] Gao, W., Zhang, N., Du, H.: A half-car model for dynamic analysis of vehicles with random parameters. In: Australasian Congress on Applied Mechanics (2007).
[12] Glover, K., McFarlane, D.: Robust stabilization of normalized coprime factor plant descriptions with $\mathcal{H}_{\infty}$-bounded uncertainty. IEEE Trans. Automat. Control 34 (1989), 821-830. | DOI | MR
[13] Henrion, D., Šebek, M., Kučera, V.: Robust Pole Placement for Second-Order Systems: An LMI Approach. Kybernetika 41 (2005), 1-14. | MR
[14] Le, X., Wang, J.: Robust Pole Assignment for Synthesizing Feedback Control Systems Using Recurrent Neural Networks. IEEE Trans. Neural Networks Learning Systems 25 (2014), 383-393. | DOI
[15] McFarlane, D., Glover, K.: A loop-shaping design procedure using $\mathcal{H}_{\infty}$ synthesis. IEEE Trans. Automat. Control 37 (1992), 759-769. | DOI | MR
[16] Nett, C. N., Jacobson, C., Balas, M. J.: A connection between state-space and doubly coprime fractional representations. IEEE Trans. Automat. Control 29 (1984), 831-832. | DOI | MR
[17] Sarjaš, A., Chowdhury, A., Svečko, R.: Robust Optimal Regional Closed-loop Pole Assignment over Positivity Conditions and Differential Evolution. IFAC CESCIT 48 (2015), 141-146.
[18] Tsai, M. C., Geddes, E. J. M., Postlethwaite, I.: Pole-zero cancellations and closed-loop properties of an ${H}_{\infty}$ mixed sensitivity design problem. Automatica 28 (1992), 519-530. | DOI | MR
[19] Vidyasagar, M.: Control System Synthesis: A Factorization Approach. M.I.T. Press, 1985. | MR
[20] Zhou, K., Doyle, J. C., Glover, K.: Robust and Optimal Control. Prentice Hall, 1995. | Zbl
Cité par Sources :