Brownian motion tree models are toric
Kybernetika, Tome 56 (2020) no. 6, pp. 1154-1175
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Felsenstein's classical model for Gaussian distributions on a phylogenetic tree is shown to be a toric variety in the space of concentration matrices. We present an exact semialgebraic characterization of this model, and we demonstrate how the toric structure leads to exact methods for maximum likelihood estimation. Our results also give new insights into the geometry of ultrametric matrices.
DOI :
10.14736/kyb-2020-6-1154
Classification :
15B48, 62H22, 62R01
Keywords: Brownian motion tree model; ultrametric matrices; toric geometry
Keywords: Brownian motion tree model; ultrametric matrices; toric geometry
@article{10_14736_kyb_2020_6_1154,
author = {Sturmfels, Bernd and Uhler, Caroline and Zwiernik, Piotr},
title = {Brownian motion tree models are toric},
journal = {Kybernetika},
pages = {1154--1175},
publisher = {mathdoc},
volume = {56},
number = {6},
year = {2020},
doi = {10.14736/kyb-2020-6-1154},
mrnumber = {4199908},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1154/}
}
TY - JOUR AU - Sturmfels, Bernd AU - Uhler, Caroline AU - Zwiernik, Piotr TI - Brownian motion tree models are toric JO - Kybernetika PY - 2020 SP - 1154 EP - 1175 VL - 56 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1154/ DO - 10.14736/kyb-2020-6-1154 LA - en ID - 10_14736_kyb_2020_6_1154 ER -
%0 Journal Article %A Sturmfels, Bernd %A Uhler, Caroline %A Zwiernik, Piotr %T Brownian motion tree models are toric %J Kybernetika %D 2020 %P 1154-1175 %V 56 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1154/ %R 10.14736/kyb-2020-6-1154 %G en %F 10_14736_kyb_2020_6_1154
Sturmfels, Bernd; Uhler, Caroline; Zwiernik, Piotr. Brownian motion tree models are toric. Kybernetika, Tome 56 (2020) no. 6, pp. 1154-1175. doi: 10.14736/kyb-2020-6-1154
Cité par Sources :