Tropical probability theory and an application to the entropic cone
Kybernetika, Tome 56 (2020) no. 6, pp. 1133-1153.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In a series of articles, we have been developing a theory of tropical diagrams of probability spaces, expecting it to be useful for information optimization problems in information theory and artificial intelligence. In this article, we give a summary of our work so far and apply the theory to derive a dimension-reduction statement about the shape of the entropic cone.
DOI : 10.14736/kyb-2020-6-1133
Classification : 94A17, 94A24
Keywords: tropical probability; entropic cone; non-Shannon inequality
@article{10_14736_kyb_2020_6_1133,
     author = {Matveev, Rostislav and Portegies, Jacobus W.},
     title = {Tropical probability theory and an application to the entropic cone},
     journal = {Kybernetika},
     pages = {1133--1153},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2020},
     doi = {10.14736/kyb-2020-6-1133},
     mrnumber = {4199907},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1133/}
}
TY  - JOUR
AU  - Matveev, Rostislav
AU  - Portegies, Jacobus W.
TI  - Tropical probability theory and an application to the entropic cone
JO  - Kybernetika
PY  - 2020
SP  - 1133
EP  - 1153
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1133/
DO  - 10.14736/kyb-2020-6-1133
LA  - en
ID  - 10_14736_kyb_2020_6_1133
ER  - 
%0 Journal Article
%A Matveev, Rostislav
%A Portegies, Jacobus W.
%T Tropical probability theory and an application to the entropic cone
%J Kybernetika
%D 2020
%P 1133-1153
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1133/
%R 10.14736/kyb-2020-6-1133
%G en
%F 10_14736_kyb_2020_6_1133
Matveev, Rostislav; Portegies, Jacobus W. Tropical probability theory and an application to the entropic cone. Kybernetika, Tome 56 (2020) no. 6, pp. 1133-1153. doi : 10.14736/kyb-2020-6-1133. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1133/

Cité par Sources :