Bounds on the information divergence for hypergeometric distributions
Kybernetika, Tome 56 (2020) no. 6, pp. 1111-1132
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The hypergeometric distributions have many important applications, but they have not had sufficient attention in information theory. Hypergeometric distributions can be approximated by binomial distributions or Poisson distributions. In this paper we present upper and lower bounds on information divergence. These bounds are important for statistical testing and for a better understanding of the notion of exchangeability.
DOI :
10.14736/kyb-2020-6-1111
Classification :
62E17, 94A17
Keywords: binomial distribution; hypergeometric distribution; information divergence; inequalities
Keywords: binomial distribution; hypergeometric distribution; information divergence; inequalities
@article{10_14736_kyb_2020_6_1111,
author = {Harremo\"es, Peter and Mat\'u\v{s}, Franti\v{s}ek},
title = {Bounds on the information divergence for hypergeometric distributions},
journal = {Kybernetika},
pages = {1111--1132},
publisher = {mathdoc},
volume = {56},
number = {6},
year = {2020},
doi = {10.14736/kyb-2020-6-1111},
mrnumber = {4199906},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1111/}
}
TY - JOUR AU - Harremoës, Peter AU - Matúš, František TI - Bounds on the information divergence for hypergeometric distributions JO - Kybernetika PY - 2020 SP - 1111 EP - 1132 VL - 56 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1111/ DO - 10.14736/kyb-2020-6-1111 LA - en ID - 10_14736_kyb_2020_6_1111 ER -
%0 Journal Article %A Harremoës, Peter %A Matúš, František %T Bounds on the information divergence for hypergeometric distributions %J Kybernetika %D 2020 %P 1111-1132 %V 56 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1111/ %R 10.14736/kyb-2020-6-1111 %G en %F 10_14736_kyb_2020_6_1111
Harremoës, Peter; Matúš, František. Bounds on the information divergence for hypergeometric distributions. Kybernetika, Tome 56 (2020) no. 6, pp. 1111-1132. doi: 10.14736/kyb-2020-6-1111
Cité par Sources :