Bounds on the information divergence for hypergeometric distributions
Kybernetika, Tome 56 (2020) no. 6, pp. 1111-1132.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The hypergeometric distributions have many important applications, but they have not had sufficient attention in information theory. Hypergeometric distributions can be approximated by binomial distributions or Poisson distributions. In this paper we present upper and lower bounds on information divergence. These bounds are important for statistical testing and for a better understanding of the notion of exchangeability.
DOI : 10.14736/kyb-2020-6-1111
Classification : 62E17, 94A17
Keywords: binomial distribution; hypergeometric distribution; information divergence; inequalities
@article{10_14736_kyb_2020_6_1111,
     author = {Harremo\"es, Peter and Mat\'u\v{s}, Franti\v{s}ek},
     title = {Bounds on the information divergence for hypergeometric distributions},
     journal = {Kybernetika},
     pages = {1111--1132},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2020},
     doi = {10.14736/kyb-2020-6-1111},
     mrnumber = {4199906},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1111/}
}
TY  - JOUR
AU  - Harremoës, Peter
AU  - Matúš, František
TI  - Bounds on the information divergence for hypergeometric distributions
JO  - Kybernetika
PY  - 2020
SP  - 1111
EP  - 1132
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1111/
DO  - 10.14736/kyb-2020-6-1111
LA  - en
ID  - 10_14736_kyb_2020_6_1111
ER  - 
%0 Journal Article
%A Harremoës, Peter
%A Matúš, František
%T Bounds on the information divergence for hypergeometric distributions
%J Kybernetika
%D 2020
%P 1111-1132
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1111/
%R 10.14736/kyb-2020-6-1111
%G en
%F 10_14736_kyb_2020_6_1111
Harremoës, Peter; Matúš, František. Bounds on the information divergence for hypergeometric distributions. Kybernetika, Tome 56 (2020) no. 6, pp. 1111-1132. doi : 10.14736/kyb-2020-6-1111. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1111/

Cité par Sources :