Gaussian approximation of Gaussian scale mixtures
Kybernetika, Tome 56 (2020) no. 6, pp. 1063-1080
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a given positive random variable $V>0$ and a given $Z\sim N(0,1)$ independent of $V$, we compute the scalar $t_0$ such that the distance in the $L^2(\mathbb{R})$ sense between $Z V^{1/2}$ and $Z\sqrt{t_0}$ is minimal. We also consider the same problem in several dimensions when $V$ is a random positive definite matrix.
DOI :
10.14736/kyb-2020-6-1063
Classification :
62H10, 62H17
Keywords: mormal approximation; Gaussian scale mixture; Plancherel theorem
Keywords: mormal approximation; Gaussian scale mixture; Plancherel theorem
@article{10_14736_kyb_2020_6_1063,
author = {Letac, G\'erard and Massam, H\'el\`ene},
title = {Gaussian approximation of {Gaussian} scale mixtures},
journal = {Kybernetika},
pages = {1063--1080},
publisher = {mathdoc},
volume = {56},
number = {6},
year = {2020},
doi = {10.14736/kyb-2020-6-1063},
mrnumber = {4199903},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1063/}
}
TY - JOUR AU - Letac, Gérard AU - Massam, Hélène TI - Gaussian approximation of Gaussian scale mixtures JO - Kybernetika PY - 2020 SP - 1063 EP - 1080 VL - 56 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1063/ DO - 10.14736/kyb-2020-6-1063 LA - en ID - 10_14736_kyb_2020_6_1063 ER -
Letac, Gérard; Massam, Hélène. Gaussian approximation of Gaussian scale mixtures. Kybernetika, Tome 56 (2020) no. 6, pp. 1063-1080. doi: 10.14736/kyb-2020-6-1063
Cité par Sources :