Gaussian approximation of Gaussian scale mixtures
Kybernetika, Tome 56 (2020) no. 6, pp. 1063-1080.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a given positive random variable $V>0$ and a given $Z\sim N(0,1)$ independent of $V$, we compute the scalar $t_0$ such that the distance in the $L^2(\mathbb{R})$ sense between $Z V^{1/2}$ and $Z\sqrt{t_0}$ is minimal. We also consider the same problem in several dimensions when $V$ is a random positive definite matrix.
DOI : 10.14736/kyb-2020-6-1063
Classification : 62H10, 62H17
Keywords: mormal approximation; Gaussian scale mixture; Plancherel theorem
@article{10_14736_kyb_2020_6_1063,
     author = {Letac, G\'erard and Massam, H\'el\`ene},
     title = {Gaussian approximation of {Gaussian} scale mixtures},
     journal = {Kybernetika},
     pages = {1063--1080},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2020},
     doi = {10.14736/kyb-2020-6-1063},
     mrnumber = {4199903},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1063/}
}
TY  - JOUR
AU  - Letac, Gérard
AU  - Massam, Hélène
TI  - Gaussian approximation of Gaussian scale mixtures
JO  - Kybernetika
PY  - 2020
SP  - 1063
EP  - 1080
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1063/
DO  - 10.14736/kyb-2020-6-1063
LA  - en
ID  - 10_14736_kyb_2020_6_1063
ER  - 
%0 Journal Article
%A Letac, Gérard
%A Massam, Hélène
%T Gaussian approximation of Gaussian scale mixtures
%J Kybernetika
%D 2020
%P 1063-1080
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1063/
%R 10.14736/kyb-2020-6-1063
%G en
%F 10_14736_kyb_2020_6_1063
Letac, Gérard; Massam, Hélène. Gaussian approximation of Gaussian scale mixtures. Kybernetika, Tome 56 (2020) no. 6, pp. 1063-1080. doi : 10.14736/kyb-2020-6-1063. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1063/

Cité par Sources :