Construction methods for gaussoids
Kybernetika, Tome 56 (2020) no. 6, pp. 1045-1062.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The number of $n$-gaussoids is shown to be a double exponential function in $n$. The necessary bounds are achieved by studying construction methods for gaussoids that rely on prescribing $3$-minors and encoding the resulting combinatorial constraints in a suitable transitive graph. Various special classes of gaussoids arise from restricting the allowed $3$-minors.
DOI : 10.14736/kyb-2020-6-1045
Classification : 05B35, 05B99, 60E05
Keywords: gaussoid; conditional independence; normal distribution; cube; minor
@article{10_14736_kyb_2020_6_1045,
     author = {Boege, Tobias and Kahle, Thomas},
     title = {Construction methods for gaussoids},
     journal = {Kybernetika},
     pages = {1045--1062},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2020},
     doi = {10.14736/kyb-2020-6-1045},
     mrnumber = {4199902},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1045/}
}
TY  - JOUR
AU  - Boege, Tobias
AU  - Kahle, Thomas
TI  - Construction methods for gaussoids
JO  - Kybernetika
PY  - 2020
SP  - 1045
EP  - 1062
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1045/
DO  - 10.14736/kyb-2020-6-1045
LA  - en
ID  - 10_14736_kyb_2020_6_1045
ER  - 
%0 Journal Article
%A Boege, Tobias
%A Kahle, Thomas
%T Construction methods for gaussoids
%J Kybernetika
%D 2020
%P 1045-1062
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1045/
%R 10.14736/kyb-2020-6-1045
%G en
%F 10_14736_kyb_2020_6_1045
Boege, Tobias; Kahle, Thomas. Construction methods for gaussoids. Kybernetika, Tome 56 (2020) no. 6, pp. 1045-1062. doi : 10.14736/kyb-2020-6-1045. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1045/

Cité par Sources :