Construction methods for gaussoids
Kybernetika, Tome 56 (2020) no. 6, pp. 1045-1062
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The number of $n$-gaussoids is shown to be a double exponential function in $n$. The necessary bounds are achieved by studying construction methods for gaussoids that rely on prescribing $3$-minors and encoding the resulting combinatorial constraints in a suitable transitive graph. Various special classes of gaussoids arise from restricting the allowed $3$-minors.
DOI :
10.14736/kyb-2020-6-1045
Classification :
05B35, 05B99, 60E05
Keywords: gaussoid; conditional independence; normal distribution; cube; minor
Keywords: gaussoid; conditional independence; normal distribution; cube; minor
@article{10_14736_kyb_2020_6_1045,
author = {Boege, Tobias and Kahle, Thomas},
title = {Construction methods for gaussoids},
journal = {Kybernetika},
pages = {1045--1062},
publisher = {mathdoc},
volume = {56},
number = {6},
year = {2020},
doi = {10.14736/kyb-2020-6-1045},
mrnumber = {4199902},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1045/}
}
TY - JOUR AU - Boege, Tobias AU - Kahle, Thomas TI - Construction methods for gaussoids JO - Kybernetika PY - 2020 SP - 1045 EP - 1062 VL - 56 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1045/ DO - 10.14736/kyb-2020-6-1045 LA - en ID - 10_14736_kyb_2020_6_1045 ER -
Boege, Tobias; Kahle, Thomas. Construction methods for gaussoids. Kybernetika, Tome 56 (2020) no. 6, pp. 1045-1062. doi: 10.14736/kyb-2020-6-1045
Cité par Sources :