Factorized mutual information maximization
Kybernetika, Tome 56 (2020) no. 5, pp. 948-978
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate the sets of joint probability distributions that maximize the average multi-information over a collection of margins. These functionals serve as proxies for maximizing the multi-information of a set of variables or the mutual information of two subsets of variables, at a lower computation and estimation complexity. We describe the maximizers and their relations to the maximizers of the multi-information and the mutual information.
DOI :
10.14736/kyb-2020-5-0948
Classification :
62B10, 94A17
Keywords: multi-information; mutual information; divergence maximization; marginal specification problem; transportation polytope
Keywords: multi-information; mutual information; divergence maximization; marginal specification problem; transportation polytope
@article{10_14736_kyb_2020_5_0948,
author = {Merkh, Thomas and Mont\'ufar, Guido},
title = {Factorized mutual information maximization},
journal = {Kybernetika},
pages = {948--978},
publisher = {mathdoc},
volume = {56},
number = {5},
year = {2020},
doi = {10.14736/kyb-2020-5-0948},
mrnumber = {4187782},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-5-0948/}
}
TY - JOUR AU - Merkh, Thomas AU - Montúfar, Guido TI - Factorized mutual information maximization JO - Kybernetika PY - 2020 SP - 948 EP - 978 VL - 56 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-5-0948/ DO - 10.14736/kyb-2020-5-0948 LA - en ID - 10_14736_kyb_2020_5_0948 ER -
Merkh, Thomas; Montúfar, Guido. Factorized mutual information maximization. Kybernetika, Tome 56 (2020) no. 5, pp. 948-978. doi: 10.14736/kyb-2020-5-0948
Cité par Sources :