A note on representing dowling geometries by partitions
Kybernetika, Tome 56 (2020) no. 5, pp. 934-947.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that a rank $\geq 3$ Dowling geometry of a group $H$ is partition representable if and only if $H$ is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable.
DOI : 10.14736/kyb-2020-5-0934
Classification : 05B35
Keywords: matroid representations; partition representations; Dowling geometries; Frobenius groups
@article{10_14736_kyb_2020_5_0934,
     author = {Mat\'u\v{s}, Franti\v{s}ek and Ben-Efraim, Aner},
     title = {A note on representing dowling geometries by partitions},
     journal = {Kybernetika},
     pages = {934--947},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2020},
     doi = {10.14736/kyb-2020-5-0934},
     mrnumber = {4187781},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-5-0934/}
}
TY  - JOUR
AU  - Matúš, František
AU  - Ben-Efraim, Aner
TI  - A note on representing dowling geometries by partitions
JO  - Kybernetika
PY  - 2020
SP  - 934
EP  - 947
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-5-0934/
DO  - 10.14736/kyb-2020-5-0934
LA  - en
ID  - 10_14736_kyb_2020_5_0934
ER  - 
%0 Journal Article
%A Matúš, František
%A Ben-Efraim, Aner
%T A note on representing dowling geometries by partitions
%J Kybernetika
%D 2020
%P 934-947
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-5-0934/
%R 10.14736/kyb-2020-5-0934
%G en
%F 10_14736_kyb_2020_5_0934
Matúš, František; Ben-Efraim, Aner. A note on representing dowling geometries by partitions. Kybernetika, Tome 56 (2020) no. 5, pp. 934-947. doi : 10.14736/kyb-2020-5-0934. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-5-0934/

Cité par Sources :