A note on representing dowling geometries by partitions
Kybernetika, Tome 56 (2020) no. 5, pp. 934-947
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that a rank $\geq 3$ Dowling geometry of a group $H$ is partition representable if and only if $H$ is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable.
We prove that a rank $\geq 3$ Dowling geometry of a group $H$ is partition representable if and only if $H$ is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable.
DOI :
10.14736/kyb-2020-5-0934
Classification :
05B35
Keywords: matroid representations; partition representations; Dowling geometries; Frobenius groups
Keywords: matroid representations; partition representations; Dowling geometries; Frobenius groups
@article{10_14736_kyb_2020_5_0934,
author = {Mat\'u\v{s}, Franti\v{s}ek and Ben-Efraim, Aner},
title = {A note on representing dowling geometries by partitions},
journal = {Kybernetika},
pages = {934--947},
year = {2020},
volume = {56},
number = {5},
doi = {10.14736/kyb-2020-5-0934},
mrnumber = {4187781},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-5-0934/}
}
TY - JOUR AU - Matúš, František AU - Ben-Efraim, Aner TI - A note on representing dowling geometries by partitions JO - Kybernetika PY - 2020 SP - 934 EP - 947 VL - 56 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-5-0934/ DO - 10.14736/kyb-2020-5-0934 LA - en ID - 10_14736_kyb_2020_5_0934 ER -
Matúš, František; Ben-Efraim, Aner. A note on representing dowling geometries by partitions. Kybernetika, Tome 56 (2020) no. 5, pp. 934-947. doi: 10.14736/kyb-2020-5-0934
Cité par Sources :