The range of non-linear natural polynomials cannot be context-free
Kybernetika, Tome 56 (2020) no. 4, pp. 722-726
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Suppose that some polynomial $f$ with rational coefficients takes only natural values at natural numbers, i. e., $L=\{f(n)\mid n\in {\mathbb N}\}\subseteq {\mathbb N}$. We show that the base-$q$ representation of $L$ is a context-free language if and only if $f$ is linear, answering a question of Shallit. The proof is based on a new criterion for context-freeness, which is a combination of the Interchange lemma and a generalization of the Pumping lemma.
DOI :
10.14736/kyb-2020-4-0722
Classification :
68Q45
Keywords: contex-free languages; pumping lemma
Keywords: contex-free languages; pumping lemma
@article{10_14736_kyb_2020_4_0722,
author = {P\'alv\"olgyi, D\"om\"ot\"or},
title = {The range of non-linear natural polynomials cannot be context-free},
journal = {Kybernetika},
pages = {722--726},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2020},
doi = {10.14736/kyb-2020-4-0722},
mrnumber = {4168532},
zbl = {07286043},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-4-0722/}
}
TY - JOUR AU - Pálvölgyi, Dömötör TI - The range of non-linear natural polynomials cannot be context-free JO - Kybernetika PY - 2020 SP - 722 EP - 726 VL - 56 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-4-0722/ DO - 10.14736/kyb-2020-4-0722 LA - en ID - 10_14736_kyb_2020_4_0722 ER -
Pálvölgyi, Dömötör. The range of non-linear natural polynomials cannot be context-free. Kybernetika, Tome 56 (2020) no. 4, pp. 722-726. doi: 10.14736/kyb-2020-4-0722
Cité par Sources :