Keywords: neutral systems with multiple delays; delay-dependent stability; linear multi-step method; Lagrange interpolation; argument principle
@article{10_14736_kyb_2020_3_0543,
author = {Hu, Guang-Da and Shao, Lizhen},
title = {Delay-dependent stability of linear multi-step methods for linear neutral systems},
journal = {Kybernetika},
pages = {543--558},
year = {2020},
volume = {56},
number = {3},
doi = {10.14736/kyb-2020-3-0543},
mrnumber = {4131742},
zbl = {07250736},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-3-0543/}
}
TY - JOUR AU - Hu, Guang-Da AU - Shao, Lizhen TI - Delay-dependent stability of linear multi-step methods for linear neutral systems JO - Kybernetika PY - 2020 SP - 543 EP - 558 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-3-0543/ DO - 10.14736/kyb-2020-3-0543 LA - en ID - 10_14736_kyb_2020_3_0543 ER -
%0 Journal Article %A Hu, Guang-Da %A Shao, Lizhen %T Delay-dependent stability of linear multi-step methods for linear neutral systems %J Kybernetika %D 2020 %P 543-558 %V 56 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-3-0543/ %R 10.14736/kyb-2020-3-0543 %G en %F 10_14736_kyb_2020_3_0543
Hu, Guang-Da; Shao, Lizhen. Delay-dependent stability of linear multi-step methods for linear neutral systems. Kybernetika, Tome 56 (2020) no. 3, pp. 543-558. doi: 10.14736/kyb-2020-3-0543
[1] Aleksandrov, A. Y., Hu, G. D., Zhabko, A. P.: Delay-independent stability conditions for some classes of nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 2209-2214. | DOI | MR
[2] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford 2003. | DOI | MR
[3] Brown, J. W., Churchill, R. V.: Complex Variables and Applications. McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004. | MR
[4] Fridman, E.: Introduction to Time-Delay Systems: Analysis and Control. Birkhäuser, New York 2014. | DOI | MR
[5] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inform. 19 (2002), 5-23. | DOI | MR
[6] Han, Q. L.: Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays. IMA J. Math. Control Inform. 20 (2003), 371-386. | DOI | MR
[7] Hu, G. D.: Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays. Kybernetika 54 (2018), 718-735. | DOI | MR
[8] Hu, G. D., Cahlon, B.: Estimations on numerically stable step-size for neutral delay differential systems with multiple delays. J. Compt. Appl. Math. 102 (1999), 221-234. | DOI | MR
[9] Hu, G. D., Liu, M.: Stability criteria of linear neutral systems with multiple delays. IEEE Trans. Automat. Control 52 (2007), 720-724. | DOI | MR
[10] Huang, C., Vandewalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Scientific Computing 25 (2004), 1608-1632. | DOI | MR
[11] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra. Prentice-Hall, Englewood Cliffs 2000.
[12] Jury, E. I.: Theory and Application of $z$-Transform Method. John Wiley and Sons, New York 1964.
[13] Kim, A. V., Ivanov, A. V.: Multistep numerical methods for fuctional difefrential equations. Math. Comput. Simul. 45 (1998), 377-384. | DOI | MR
[14] Kolmanovskii, V. B., Myshkis, A.: Introduction to Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999. | DOI | MR
[15] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems. John Wiley and Sons, New York 1999. | MR
[16] Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications. Academic Press, Orlando 1985. | MR
[17] Maset, S.: Instability of Runge-Kutta methods when applied to linear systems of delay differential equations. Numer. Math. 90 (2002), 555-562. | DOI | MR
[18] Medvedeva, I. V., Zhabko, A. P.: Synthesis of Razumikhin and Lyapunov-Krasovskii approaches to stability analysis of time-delay systems. Automatica 51 (2015), 372-377. | DOI | MR
[19] Tian, H., Kuang, J.: The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms. J. Comput. Appl. Math. 58 (1995), 171-181. | DOI | MR
[20] Vyhlidal, T., Zitek, P.: Modification of Mikhaylov criterion for neutral time-delay systems. IEEE Trans. Automat. Control 54 (2009), 2430-2435. | DOI | MR
Cité par Sources :