Delay-dependent stability of linear multi-step methods for linear neutral systems
Kybernetika, Tome 56 (2020) no. 3, pp. 543-558 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we are concerned with numerical methods for linear neutral systems with multiple delays. For delay-dependently stable neutral systems, we ask what conditions must be imposed on linear multi-step methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. Combining with Lagrange interpolation, linear multi-step methods can be applied to the neutral systems. Utilizing the argument principle, a sufficient condition is derived for linear multi-step methods with preserving delay-dependent stability. Numerical examples are given to illustrate the main results.
In this paper, we are concerned with numerical methods for linear neutral systems with multiple delays. For delay-dependently stable neutral systems, we ask what conditions must be imposed on linear multi-step methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. Combining with Lagrange interpolation, linear multi-step methods can be applied to the neutral systems. Utilizing the argument principle, a sufficient condition is derived for linear multi-step methods with preserving delay-dependent stability. Numerical examples are given to illustrate the main results.
DOI : 10.14736/kyb-2020-3-0543
Classification : 65L05, 65L07, 65L20
Keywords: neutral systems with multiple delays; delay-dependent stability; linear multi-step method; Lagrange interpolation; argument principle
@article{10_14736_kyb_2020_3_0543,
     author = {Hu, Guang-Da and Shao, Lizhen},
     title = {Delay-dependent stability of linear multi-step methods for linear neutral systems},
     journal = {Kybernetika},
     pages = {543--558},
     year = {2020},
     volume = {56},
     number = {3},
     doi = {10.14736/kyb-2020-3-0543},
     mrnumber = {4131742},
     zbl = {07250736},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-3-0543/}
}
TY  - JOUR
AU  - Hu, Guang-Da
AU  - Shao, Lizhen
TI  - Delay-dependent stability of linear multi-step methods for linear neutral systems
JO  - Kybernetika
PY  - 2020
SP  - 543
EP  - 558
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-3-0543/
DO  - 10.14736/kyb-2020-3-0543
LA  - en
ID  - 10_14736_kyb_2020_3_0543
ER  - 
%0 Journal Article
%A Hu, Guang-Da
%A Shao, Lizhen
%T Delay-dependent stability of linear multi-step methods for linear neutral systems
%J Kybernetika
%D 2020
%P 543-558
%V 56
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-3-0543/
%R 10.14736/kyb-2020-3-0543
%G en
%F 10_14736_kyb_2020_3_0543
Hu, Guang-Da; Shao, Lizhen. Delay-dependent stability of linear multi-step methods for linear neutral systems. Kybernetika, Tome 56 (2020) no. 3, pp. 543-558. doi: 10.14736/kyb-2020-3-0543

[1] Aleksandrov, A. Y., Hu, G. D., Zhabko, A. P.: Delay-independent stability conditions for some classes of nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 2209-2214. | DOI | MR

[2] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford 2003. | DOI | MR

[3] Brown, J. W., Churchill, R. V.: Complex Variables and Applications. McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004. | MR

[4] Fridman, E.: Introduction to Time-Delay Systems: Analysis and Control. Birkhäuser, New York 2014. | DOI | MR

[5] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inform. 19 (2002), 5-23. | DOI | MR

[6] Han, Q. L.: Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays. IMA J. Math. Control Inform. 20 (2003), 371-386. | DOI | MR

[7] Hu, G. D.: Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays. Kybernetika 54 (2018), 718-735. | DOI | MR

[8] Hu, G. D., Cahlon, B.: Estimations on numerically stable step-size for neutral delay differential systems with multiple delays. J. Compt. Appl. Math. 102 (1999), 221-234. | DOI | MR

[9] Hu, G. D., Liu, M.: Stability criteria of linear neutral systems with multiple delays. IEEE Trans. Automat. Control 52 (2007), 720-724. | DOI | MR

[10] Huang, C., Vandewalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Scientific Computing 25 (2004), 1608-1632. | DOI | MR

[11] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra. Prentice-Hall, Englewood Cliffs 2000.

[12] Jury, E. I.: Theory and Application of $z$-Transform Method. John Wiley and Sons, New York 1964.

[13] Kim, A. V., Ivanov, A. V.: Multistep numerical methods for fuctional difefrential equations. Math. Comput. Simul. 45 (1998), 377-384. | DOI | MR

[14] Kolmanovskii, V. B., Myshkis, A.: Introduction to Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999. | DOI | MR

[15] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems. John Wiley and Sons, New York 1999. | MR

[16] Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications. Academic Press, Orlando 1985. | MR

[17] Maset, S.: Instability of Runge-Kutta methods when applied to linear systems of delay differential equations. Numer. Math. 90 (2002), 555-562. | DOI | MR

[18] Medvedeva, I. V., Zhabko, A. P.: Synthesis of Razumikhin and Lyapunov-Krasovskii approaches to stability analysis of time-delay systems. Automatica 51 (2015), 372-377. | DOI | MR

[19] Tian, H., Kuang, J.: The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms. J. Comput. Appl. Math. 58 (1995), 171-181. | DOI | MR

[20] Vyhlidal, T., Zitek, P.: Modification of Mikhaylov criterion for neutral time-delay systems. IEEE Trans. Automat. Control 54 (2009), 2430-2435. | DOI | MR

Cité par Sources :