Quotient structures in lattice effect algebras
Kybernetika, Tome 55 (2019) no. 5, pp. 879-895
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we define some types of filters in lattice effect algebras, investigate some relations between them and introduce some new examples of lattice effect algebras. Then by using the strong filter, we find a CI-lattice congruence on lattice effect algebras, such that the induced quotient structure of it is a lattice effect algebra, too. Finally, under some suitable conditions, we get a quotient MV-effect algebra and a quotient orthomodular lattice, by this congruence relation.
DOI :
10.14736/kyb-2019-5-0879
Classification :
06B10, 81R05
Keywords: Lattice effect algebra; CI-lattice; Sasaki arrow; (strong; fantastic; implicative; positive implicative) filter; Riesz ideal; D-ideal; MV-effect algebra; orthomodular lattice
Keywords: Lattice effect algebra; CI-lattice; Sasaki arrow; (strong; fantastic; implicative; positive implicative) filter; Riesz ideal; D-ideal; MV-effect algebra; orthomodular lattice
@article{10_14736_kyb_2019_5_0879,
author = {Sharafi, Amir Hossein and Borzooei, Rajb Ali},
title = {Quotient structures in lattice effect algebras},
journal = {Kybernetika},
pages = {879--895},
publisher = {mathdoc},
volume = {55},
number = {5},
year = {2019},
doi = {10.14736/kyb-2019-5-0879},
mrnumber = {4055582},
zbl = {07177922},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0879/}
}
TY - JOUR AU - Sharafi, Amir Hossein AU - Borzooei, Rajb Ali TI - Quotient structures in lattice effect algebras JO - Kybernetika PY - 2019 SP - 879 EP - 895 VL - 55 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0879/ DO - 10.14736/kyb-2019-5-0879 LA - en ID - 10_14736_kyb_2019_5_0879 ER -
Sharafi, Amir Hossein; Borzooei, Rajb Ali. Quotient structures in lattice effect algebras. Kybernetika, Tome 55 (2019) no. 5, pp. 879-895. doi: 10.14736/kyb-2019-5-0879
Cité par Sources :