Keywords: Lattice effect algebra; CI-lattice; Sasaki arrow; (strong; fantastic; implicative; positive implicative) filter; Riesz ideal; D-ideal; MV-effect algebra; orthomodular lattice
@article{10_14736_kyb_2019_5_0879,
author = {Sharafi, Amir Hossein and Borzooei, Rajb Ali},
title = {Quotient structures in lattice effect algebras},
journal = {Kybernetika},
pages = {879--895},
year = {2019},
volume = {55},
number = {5},
doi = {10.14736/kyb-2019-5-0879},
mrnumber = {4055582},
zbl = {07177922},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0879/}
}
TY - JOUR AU - Sharafi, Amir Hossein AU - Borzooei, Rajb Ali TI - Quotient structures in lattice effect algebras JO - Kybernetika PY - 2019 SP - 879 EP - 895 VL - 55 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0879/ DO - 10.14736/kyb-2019-5-0879 LA - en ID - 10_14736_kyb_2019_5_0879 ER -
Sharafi, Amir Hossein; Borzooei, Rajb Ali. Quotient structures in lattice effect algebras. Kybernetika, Tome 55 (2019) no. 5, pp. 879-895. doi: 10.14736/kyb-2019-5-0879
[1] Avallone, A., Vitolo, P.: Congruences and ideals of effect algebras. Kluwer Academic Publishers 20 (2003), 1, 67-77. | DOI | MR
[2] Bennett, M. K., Foulis, D. J.: Phi-symmetric effect algebras. Found. Physics 25 (1995), 12, 1699-1722. | DOI | MR
[3] Borzooei, R. A., Dvurečenskij, A., Sharafi, A. H.: Material implications in lattice effect algebras. Inform. Sci. 433-434 (2018), 233-240. | DOI | MR
[4] Borzooei, R. A., Shoar, S. Khosravi, Ameri, R.: Some types of filters in MTL-algebras. Fuzzy Sets Systems 187 (2012), 1, 92-102. | DOI | MR
[5] Chajda, I., Halaš, R., Kühr, J.: Many-valued quantum algebras. Algebra Univers. 60 (2009), 1, 63-90. | DOI | MR
[6] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Springer Netherlands, 2000. | DOI | MR | Zbl
[7] Farahani, H., Zahiri, O.: Algebraic view of MTL-filters. Ann. Univ. Craiova 40 (2013), 1, 34-44. | MR
[8] Foulis, D. J.: MV and Hyting effect algebras. Found. Physics 30 (2000), 10, 1687-1706. | DOI | MR
[9] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Physics 24 (1994), 10, 1331-1352. | DOI | MR | Zbl
[10] Foulis, D. J., Pulmannová, S.: Logical connectives on lattice effect algebras. Studia Logica 100 (2012), 6, 1291-1315. | DOI | MR
[11] Haveshki, M., Saeid, A. Borumand, Eslami, E.: Some types of filters in BL-algebras. Soft Computing 10 (2006), 8, 657-664. | DOI
[12] Jenča, G., Marinová, I., Riečanová, Z.: Central elements, blocks and sharp elements of lattice effect algebras. In: Proc. Third Seminar Fuzzy Sets and Quantum Structures 2002, pp. 28-33.
[13] Jenča, G., Pulmannová, S.: Ideals and quotients in lattice ordered effect algebras. Soft Computing 5 (2001), 5, 376-380. | DOI
[14] Cignoli, R., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Springer Science and Business Media, 2000. | DOI | MR | Zbl
[15] Pulmannová, S., Vinceková, E.: Congruences and ideals in lattice effect algebras as basic algebras. Kybernetika 45 (2009), 6, 1030-1039. | MR
[16] Rad, S. Rafiee, Sharafi, A. H., Smets, S.: A Complete axiomatisation for the logic of lattice effect algebras. Int. J. Theoret. Physics (2019). | DOI
[17] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Int. J. Theoret. Physics 39 (2000), 2, 231-237. | DOI | MR
Cité par Sources :