Keywords: effect algebra; Dieudonné theorem; modular measures; lattice group
@article{10_14736_kyb_2019_5_0870,
author = {Barbieri, Giuseppina},
title = {A {Dieudonn\'e} theorem for lattice group-valued measures},
journal = {Kybernetika},
pages = {870--878},
year = {2019},
volume = {55},
number = {5},
doi = {10.14736/kyb-2019-5-0870},
mrnumber = {4055581},
zbl = {07177921},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0870/}
}
Barbieri, Giuseppina. A Dieudonné theorem for lattice group-valued measures. Kybernetika, Tome 55 (2019) no. 5, pp. 870-878. doi: 10.14736/kyb-2019-5-0870
[1] Avallone, A.: Separating points of measures on effect algebras. Mathematica Slovaca 20 (2006), 203-214. | MR
[2] Avallone, A.: Cafiero and Nikodym boundedness theorem in effect algebras. Ital. J. Pure Appl. Math. 57 (2007), 2, 129-140. | MR
[3] Barbieri, G.: On the Dieudonné theorem. Sci. Math. Japon. 70 (2009), 3, 279-284. | MR
[4] Bennett, M. K., Foulis, D. J.: Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. Found. Phys. 24 (1994), 10, 1331-1352. | DOI | MR
[5] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mountains Math. Publ. 8 (1996), 9-42. | MR
[6] Boccuto, A., Candeloro, D.: Some new results about Brooks-Jewett and Dieudonné-type theorems in (l)-groups. Kybernetika 46 (2010), 6, 1049-1060. | MR
[7] Boccuto, A., Dimitriou, X.: Equivalence between limit theorems for lattice group-valued $k$-triangular set functions. Mediterr. J. Math. 4 (2018), Art. 174, 20 pp. | DOI | MR
[8] Butnariu, D., Klement, E. P.: Triangular norm-based measures and games with fuzzy coalitions. Theory and Decision Library. Series C: Game Theory, Mathematical Programming and Operations Research, 10. Kluwer Academic Publishers Group, Dordrecht 1993. | DOI | MR
[9] Chovanec, F., Kopka, F.: D-posets. Math. Slovaca 44 (1994), 1, 21-34. | MR
[10] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Bratislava 2000. | DOI | MR | Zbl
[11] Epstein, L. G., Zhang, J.: Subjective probabilities on subjectively unambiguous events. Econometrica 69 (2001), 2, 265-306. | DOI | MR
[12] Fleischer, I., Traynor, T.: Equivalence of group-valued measures on an abstract lattice. Bull. Acad. Polon. Sci. Sci. Math. 28 (1980), 11-12, 549-556. | MR
[13] Fremlin, D. H.: A direct proof of the Matthes-Wright integral extension theorem. J. London Math. Soc. 11 (1975), 2, 276-284. | DOI | MR
[14] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislavia 1997. | DOI | MR | Zbl
Cité par Sources :