A Dieudonné theorem for lattice group-valued measures
Kybernetika, Tome 55 (2019) no. 5, pp. 870-878
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A version of Dieudonné theorem is proved for lattice group-valued modular measures on lattice ordered effect algebras. In this way we generalize some results proved in the real-valued case.
A version of Dieudonné theorem is proved for lattice group-valued modular measures on lattice ordered effect algebras. In this way we generalize some results proved in the real-valued case.
DOI : 10.14736/kyb-2019-5-0870
Classification : 28A12, 28A33, 28B15
Keywords: effect algebra; Dieudonné theorem; modular measures; lattice group
@article{10_14736_kyb_2019_5_0870,
     author = {Barbieri, Giuseppina},
     title = {A {Dieudonn\'e} theorem for lattice group-valued measures},
     journal = {Kybernetika},
     pages = {870--878},
     year = {2019},
     volume = {55},
     number = {5},
     doi = {10.14736/kyb-2019-5-0870},
     mrnumber = {4055581},
     zbl = {07177921},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0870/}
}
TY  - JOUR
AU  - Barbieri, Giuseppina
TI  - A Dieudonné theorem for lattice group-valued measures
JO  - Kybernetika
PY  - 2019
SP  - 870
EP  - 878
VL  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0870/
DO  - 10.14736/kyb-2019-5-0870
LA  - en
ID  - 10_14736_kyb_2019_5_0870
ER  - 
%0 Journal Article
%A Barbieri, Giuseppina
%T A Dieudonné theorem for lattice group-valued measures
%J Kybernetika
%D 2019
%P 870-878
%V 55
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0870/
%R 10.14736/kyb-2019-5-0870
%G en
%F 10_14736_kyb_2019_5_0870
Barbieri, Giuseppina. A Dieudonné theorem for lattice group-valued measures. Kybernetika, Tome 55 (2019) no. 5, pp. 870-878. doi: 10.14736/kyb-2019-5-0870

[1] Avallone, A.: Separating points of measures on effect algebras. Mathematica Slovaca 20 (2006), 203-214. | MR

[2] Avallone, A.: Cafiero and Nikodym boundedness theorem in effect algebras. Ital. J. Pure Appl. Math. 57 (2007), 2, 129-140. | MR

[3] Barbieri, G.: On the Dieudonné theorem. Sci. Math. Japon. 70 (2009), 3, 279-284. | MR

[4] Bennett, M. K., Foulis, D. J.: Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. Found. Phys. 24 (1994), 10, 1331-1352. | DOI | MR

[5] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mountains Math. Publ. 8 (1996), 9-42. | MR

[6] Boccuto, A., Candeloro, D.: Some new results about Brooks-Jewett and Dieudonné-type theorems in (l)-groups. Kybernetika 46 (2010), 6, 1049-1060. | MR

[7] Boccuto, A., Dimitriou, X.: Equivalence between limit theorems for lattice group-valued $k$-triangular set functions. Mediterr. J. Math. 4 (2018), Art. 174, 20 pp. | DOI | MR

[8] Butnariu, D., Klement, E. P.: Triangular norm-based measures and games with fuzzy coalitions. Theory and Decision Library. Series C: Game Theory, Mathematical Programming and Operations Research, 10. Kluwer Academic Publishers Group, Dordrecht 1993. | DOI | MR

[9] Chovanec, F., Kopka, F.: D-posets. Math. Slovaca 44 (1994), 1, 21-34. | MR

[10] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Bratislava 2000. | DOI | MR | Zbl

[11] Epstein, L. G., Zhang, J.: Subjective probabilities on subjectively unambiguous events. Econometrica 69 (2001), 2, 265-306. | DOI | MR

[12] Fleischer, I., Traynor, T.: Equivalence of group-valued measures on an abstract lattice. Bull. Acad. Polon. Sci. Sci. Math. 28 (1980), 11-12, 549-556. | MR

[13] Fremlin, D. H.: A direct proof of the Matthes-Wright integral extension theorem. J. London Math. Soc. 11 (1975), 2, 276-284. | DOI | MR

[14] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislavia 1997. | DOI | MR | Zbl

Cité par Sources :