Keywords: periodic solution; $D$ operator; existence; stability
@article{10_14736_kyb_2019_5_0852,
author = {Du, Bo},
title = {New results on stability of periodic solution for {CNNs} with proportional delays and $D$ operator},
journal = {Kybernetika},
pages = {852--869},
year = {2019},
volume = {55},
number = {5},
doi = {10.14736/kyb-2019-5-0852},
mrnumber = {4055580},
zbl = {07177920},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0852/}
}
TY - JOUR AU - Du, Bo TI - New results on stability of periodic solution for CNNs with proportional delays and $D$ operator JO - Kybernetika PY - 2019 SP - 852 EP - 869 VL - 55 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0852/ DO - 10.14736/kyb-2019-5-0852 LA - en ID - 10_14736_kyb_2019_5_0852 ER -
%0 Journal Article %A Du, Bo %T New results on stability of periodic solution for CNNs with proportional delays and $D$ operator %J Kybernetika %D 2019 %P 852-869 %V 55 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0852/ %R 10.14736/kyb-2019-5-0852 %G en %F 10_14736_kyb_2019_5_0852
Du, Bo. New results on stability of periodic solution for CNNs with proportional delays and $D$ operator. Kybernetika, Tome 55 (2019) no. 5, pp. 852-869. doi: 10.14736/kyb-2019-5-0852
[1] Aouiti, C., all., I. B. Gharbia at: Dynamics of impulsive neutral-type BAM neural networks. J. Franklin Inst. 356 (2019), 2294-2324. | DOI | MR
[2] Arik, S.: A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays. J. Franklin Inst. 356 (2019), 276-291. | DOI | MR
[3] Askari, E., Setarehdan, S., Mohammadi, A. Sheikhani A. M., Teshnehlab, H.: Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks. J. Integr. Neurosci. 17 (2018), 391-411. | DOI
[4] Barbalat, I.: Systems d'equations differential d'oscillationsn onlinearities. Rev. Rounmaine Math. Pure Appl. 4 (1959), 267-270. | MR
[5] Cheng, Z., Li, F.: Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay. Mediterr. J. Math. 15 (2018), 134-153. | DOI | MR
[6] Chua, L., Yang, L.: Cellular neural networks: application. IEEE. Trans. Circuits Syst. 35 (1988), 1273-1290. | DOI | MR
[7] Dharani, S., Rakkiyappan, R., Cao, J.: New delay-dependent stability criteria for switched hopfield neural networks of neutral type with additive time-varying delay components. Neurocomputing 151 (2015), 827-834. | DOI
[8] Ding, H., Liang, J., Xiao, T.: Existence of almost periodic solutions for SICNNs with time-varying delays. Physics Lett. A 372 (2008), 5411-5416. | DOI | MR
[9] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin 1977. | DOI | MR
[10] Gang, Y.: New results on the stability of fuzzy cellular neural networks with time-varying leakage delays. Neural Computing Appl. 25 (2014), 1709-1715. | DOI | MR
[11] Guan, K.: Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control. Neurocomputing 283 (2018), 256-265. | DOI
[12] Guo, R., Ge, W., all., Z. Zhang at: Finite time state estimation of complex-valued BAM neutral-type neural networks with time-varying delays. Int. J. Control, Automat. Systems 17 (2019), 3, 801-809. | DOI
[13] Huang, Z.: Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays. Int. J. Machine Learning Cybernet. 8 (2017), 1323-1331. | DOI
[14] Li, Y., Li, B., Yao, S., Xiong, L.: The global exponential pseudo almost periodic synchronization of quaternion-valued cellular neural networks with time-varying delay. Neurocomputing 303 (2018), 75-87. | DOI
[15] Li, X., Huang, L., Zhou, H.: Global stability of cellular neural networks with constant and variable delays. Nonlinear Anal. TMA 53 (2003), 319-333. | DOI | MR
[16] Liu, B.: Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays. Math. Methods App. Sci. 40 (2017), 167-174. | DOI | MR
[17] Manivannan, R., Samidurai, R., Cao, J., Alsaedi, A.: New delay-interval-dependent stability criteria for switched hopfield neural networks of neutral type with successive time-varying delay components. Cognit. Neurodyn. 10 (2016), 6, 543-562. | DOI
[18] Ozcan, N.: Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case. Neural Networks 113 (2019), 20-27. | DOI
[19] Rakkiyappan, R., Balasubramaniam, P.: New global exponential stability results for neutral type neural networks with distributed time delays. Neurocomputing 71 (2008), 1039-1045. | DOI | MR
[20] Samidurai, R., Rajavel, S., Sriraman, R., Cao, J., Alsaedi, A., Alsaadi, F. E.: Novel results on stability analysis of neutral-type neural networks with additive time-varying delay components and leakage delay. Int. J. Control Automat. Syst. 15 (2017), 4, 1888-1900. | DOI
[21] all., R. Saml et: Some generalized global stability criteria for delayed Cohen-Grossberg neural networks of neutral-type. Neural Networks 116 (2019), 198-207. | DOI
[22] Shi, K., Zhu, H., Zhong, S., Zeng, Y., Zhang, Y.: New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach. J. Frankl. Inst. 352 (2015), 1, 155-176. | DOI | MR
[23] Singh, V.: Improved global robust stability criterion for delayed neural networks. Chao. Solit. Fract. 31 (2007), 224-229. | DOI | MR
[24] Singh, V.: On global robust stability of interval Hopfield neural networks with delay. Chao. Solit. Fract. 33 (2007), 1183-1188. | DOI | MR
[25] Xiao, S.: Global exponential convergence of HCNNs with neutral type proportional delays and D operator. Neural Process. Lett. 49 (2019), 347-356. | DOI
[26] Xin, Y., Cheng, Z. B.: Neutral operator with variable parameter and third-order neutral differential equation. Adv. Diff. Equ. 273 (2014), 1-18. | DOI | MR
[27] Yao, L.: Global convergence of CNNs with neutral type delays and D operator. Neural Comput. Appl. 29 (2018), 105-109. | DOI
[28] Yu, Y.: Global exponential convergence for a class of neutral functional differential equations with proportional delays. Math. Methods Appl. Sci. 39 (2016), 4520-4525. | DOI | MR
[29] Yu, Y.: Global exponential convergence for a class of HCNNs with neutral time-proportional delays. Appl. Math. Comput. 285 (2016), 1-7. | DOI | MR
[30] Zhang, X., Han, Q.: Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach. Neural Networks 54 (2014), 57-69. | DOI
[31] Zhang, X., Han, Q.: Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Trans. Cybernetics 47 (2017), 3184-3194. | DOI
[32] Zhang, X., Han, Q., Wang, L.: Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 29 (2018), 5319-5329. | DOI | MR
[33] Zhang, X., Han, Q., Zeng, Z.: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities. IEEE Trans. Cybernetics 48 (2018), 1660-1671. | DOI
[34] Zhang, H., all., T. Ma et: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Systems Man Cybernet. 40 (2010), 831-844. | DOI | MR
[35] Zhang, H., Qiu, Z., Xiong, L.: Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump. Neurocomputing 333 (2019), 395-406. | DOI
[36] Zheng, M., all., L. Li et: Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks. Comm. Nonlinear Sci. Numer. Simul. 59 (2018), 272-291. | DOI | MR
[37] Zhou, Q.: Weighted pseudo anti-periodic solutions for cellular neural networks with mixed delays. Asian J. Control 19 (2017), 1557-1563. | DOI | MR
[38] Zhou, Q., Shao, J.: Weighted pseudo-anti-periodic SICNNs with mixed delays. Neural Computing Appl. 29 (2018), 272-291. | DOI
Cité par Sources :