New results on stability of periodic solution for CNNs with proportional delays and $D$ operator
Kybernetika, Tome 55 (2019) no. 5, pp. 852-869.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The problems related to periodic solutions of cellular neural networks (CNNs) involving $D$ operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system.
DOI : 10.14736/kyb-2019-5-0852
Classification : 34D05, 34D20
Keywords: periodic solution; $D$ operator; existence; stability
@article{10_14736_kyb_2019_5_0852,
     author = {Du, Bo},
     title = {New results on stability of periodic solution for {CNNs} with proportional delays and $D$ operator},
     journal = {Kybernetika},
     pages = {852--869},
     publisher = {mathdoc},
     volume = {55},
     number = {5},
     year = {2019},
     doi = {10.14736/kyb-2019-5-0852},
     mrnumber = {4055580},
     zbl = {07177920},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0852/}
}
TY  - JOUR
AU  - Du, Bo
TI  - New results on stability of periodic solution for CNNs with proportional delays and $D$ operator
JO  - Kybernetika
PY  - 2019
SP  - 852
EP  - 869
VL  - 55
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0852/
DO  - 10.14736/kyb-2019-5-0852
LA  - en
ID  - 10_14736_kyb_2019_5_0852
ER  - 
%0 Journal Article
%A Du, Bo
%T New results on stability of periodic solution for CNNs with proportional delays and $D$ operator
%J Kybernetika
%D 2019
%P 852-869
%V 55
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0852/
%R 10.14736/kyb-2019-5-0852
%G en
%F 10_14736_kyb_2019_5_0852
Du, Bo. New results on stability of periodic solution for CNNs with proportional delays and $D$ operator. Kybernetika, Tome 55 (2019) no. 5, pp. 852-869. doi : 10.14736/kyb-2019-5-0852. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0852/

Cité par Sources :