Keywords: economic dispatch; non-essential demand response; random wind power; bat algorithm; multi-subpopulation
@article{10_14736_kyb_2019_5_0809,
author = {Shen, Yanjun and Yang, Bo and Huang, Xiongfeng and Zhang, Yujiao and Tan, Chao},
title = {A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response},
journal = {Kybernetika},
pages = {809--830},
year = {2019},
volume = {55},
number = {5},
doi = {10.14736/kyb-2019-5-0809},
zbl = {07177918},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0809/}
}
TY - JOUR AU - Shen, Yanjun AU - Yang, Bo AU - Huang, Xiongfeng AU - Zhang, Yujiao AU - Tan, Chao TI - A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response JO - Kybernetika PY - 2019 SP - 809 EP - 830 VL - 55 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0809/ DO - 10.14736/kyb-2019-5-0809 LA - en ID - 10_14736_kyb_2019_5_0809 ER -
%0 Journal Article %A Shen, Yanjun %A Yang, Bo %A Huang, Xiongfeng %A Zhang, Yujiao %A Tan, Chao %T A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response %J Kybernetika %D 2019 %P 809-830 %V 55 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0809/ %R 10.14736/kyb-2019-5-0809 %G en %F 10_14736_kyb_2019_5_0809
Shen, Yanjun; Yang, Bo; Huang, Xiongfeng; Zhang, Yujiao; Tan, Chao. A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response. Kybernetika, Tome 55 (2019) no. 5, pp. 809-830. doi: 10.14736/kyb-2019-5-0809
[1] Abdelaziz, A. Y., Ali, E. S., Elazim, S. M. A.: Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems. Energy 101 (2016), 506-518. | DOI
[2] Chakri, A., Khelif, R., Benouaret, M., al., et: New directional bat algorithm for continuous optimization problems. Expert Systems Appl. 69 (2017), 159-175. | DOI
[3] Chen, C. L., Vempati, V. S., Aljaber, N.: An application of genetic algorithms for flow shop problems. Europ. J. Oper. Res. 80 (1995), 389-396. | DOI
[4] Cheng, C. T., Liao, S. L., Tang, Z. T., al., et: Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch. Energy Conversion Management 50 (2009), 3007-3014. | DOI
[5] Chen, F., Zhou, J., Wang, C., al., et: A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching. Energy 121 (2017), 276-291. | DOI
[6] Das, S., Suganthan, P. N.: Differential evolution: a Survey of the State-of-the-art. IEEE Trans. Evolutionary Comput. 15 (2011), 4-31. | DOI | MR
[7] Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Systems, Man, Cybernetics, Part B (Cybernetics) 26 (1996), 29-41. | DOI
[8] Fahrioglu, M., Alvarado, F. L.: Designing incentive compatible contracts for effective demand management. IEEE Trans. Power Systems 15 (2000), 1255-1260. | DOI
[9] Fahrioglu, M., Alvarado, F. L.: Using utility information to calibrate customer demand management behavior models. IEEE Trans. Power Systems 16 (2001), 317-322. | DOI
[10] Gan, C., Cao, W., Wu, M., al., et: A new bat algorithm based on iterative local search and stochastic inertia weight. Expert Systems Appl. 104 (2018), 202-212. | DOI
[11] Gandomi, A. H., Yang, X. S.: Chaotic bat algorithm. J. Comput. Sci. 5 (2014), 224-232. | DOI | MR
[12] Gandomi, A. H., Yang, X. S., Alavi, A. H., al., et: Bat algorithm for constrained optimization tasks. Neural Computing Appl. 22 (2013), 1239-1255. | DOI
[13] Ghasemi, M., Ghavidel, S., Ghanbarian, M. M., al., et: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy 78 (2014), 276-289. | DOI
[14] Guo, Y., Tong, L., Wu, W., al., et: Coordinated Multi-area Economic Dispatch via Critical Region Projection. IEEE Trans. Power Systems 32 (2017), 3736-3746. | DOI
[15] Guo, F., Wen, C., Mao, J., al., et: Distributed economic dispatch for dmart grids with random wind power. IEEE Trans. Smart Grid 7 (2016), 1572-1583. | DOI
[16] He, X. S., Ding, W. J., Yang, X. S.: Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput. Appl. 25 (2014), 459-468. | DOI
[17] Hetzer, J., Yu, D. C., Bhattarai, K.: An economic dispatch model incorporating wind power. IEEE Trans. Energy Conversion 23 (2008), 603-611. | DOI
[18] Jabr, R., Coonick, A. H., Cory, B. J.: A homogeneous linear programming algorithm for the security constrained economic dispatch problem. IEEE Trans. Power Syst. 15 (2000), 930-936. | DOI
[19] Jeddi, B., Vahidinasab, V.: A modified harmony search method for environmental/economic load dispatch of real-world power systems. Energy Conversion Management 78 (2014), 661-675. | DOI
[20] Ji, M., Tang, H.: Application of chaos in simulated annealing. Chaos Solitons Fractals 21 (2004), 933-941. | DOI | MR
[21] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. ICNN'95 - International Conference on Neural Networks, Perth 1995, 4, pp. 1942-1948. | DOI
[22] Lee, K. Y., Park, Y. M., Ortiz, J. L.: Fuel-cost minimisation for both real-and reactive-power dispatches. IEE Proceedings. Part C: Generation, Transmission and Distribution. 131 (1984), 85-93. | DOI
[23] Li, M., Hou, J., Niu, Y., al., et: Economic dispatch of wind-thermal power system by using aggregated output characteristics of virtual power plants. In: International Conference on Control and Automation, IEEE 2016, pp. 830-835. | DOI
[24] Liang, H., Liu, Y., Shen, Y., al., et: A hybrid bat algorithm for economic dispatch with random wind power. IEEE Trans. Power Syst. 33 (2018), 5052-5061. | DOI
[25] Liu, X., Xu, W.: Minimum emission dispatch constrained by stochastic wind power availability and cost. IEEE Trans. Power Systems 25 (2010), 1705-1713. | DOI
[26] al., I. Mazhoud et: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism. Engrg. Appl. Artif. Intell. 26 (2013), 1263-1273. | DOI
[27] Nwulu, N. I., Fahrioglu, M.: A neural network model for optimal demand management contract design. In: International Conference on Environment and Electrical Engineering, IEEE 2011, pp. 1-4. | DOI
[28] Nwulu, N. I., Fahrioglu, M.: Power system demand management contract design: A comparison between game theory and artificial neural networks. Int. Rev. Modell. Simul. 4 (2011), 104-112.
[29] Nwulu, N. I., Xia, X.: Optimal dispatch for a microgrid incorporating renewables and demand response. Renewable Energy 101 (2017), 16-28. | DOI
[30] Park, J. B., Lee, K. S., Shin, J. R., al., et: A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans. Power Syst. 20 (2005), 34-42. | DOI
[31] Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Physics 226 (2007), 1830-1844. | DOI | MR
[32] Sen, T., Mathur, H. D.: A new approach to solve Economic Dispatch problem using a Hybrid ACO/ABC/HS optimization algorithm. Int. J. Electr. Power Energy Systems 78 (2016), 735-744. | DOI
[33] Walters, D. C., Sheble, G. B.: Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans. Power Systems 8 (1993), 1325-1332. | DOI
[34] Wood, A. J., Wollenberg, B. F.: Power generation operation and control. Second edition. Fuel Energy Abstracts 37 (1996), 195. | DOI
[35] Yang, X. S.: A new metaheuristic bat-inspired algorithm. Comput. Knowledge Technol. 284 (2010), 65-74. | DOI
[36] Yang, X. S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Modell. Numer. Optim. 1 (2010), 330-343. | DOI
[37] Yang, X., Gandomi, A. H.: Bat algorithm: a novel approach for global engineering optimization. Engrg. Computations 29 (2012), 464-483. | DOI | MR
[38] Yang, H., Yi, J., Zhao, J., al., et: Extreme learning machine based genetic algorithm and its application in power system economic dispatch. Neurocomputing 102 (2013), 154-162. | DOI
[39] Yao, F., Dong, Z. Y., Meng, K., al., et: Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in Australia. IEEE Trans. Industr. Inform. 8 (2012), 880-888. | DOI
Cité par Sources :