Keywords: sparse inverse covariance selection; regularization; graphical models; entropy; optimization
@article{10_14736_kyb_2019_5_0782,
author = {Zorzi, Mattia},
title = {Graphical model selection for a particular class of continuous-time processes},
journal = {Kybernetika},
pages = {782--801},
year = {2019},
volume = {55},
number = {5},
doi = {10.14736/kyb-2019-5-0782},
mrnumber = {4055576},
zbl = {07177916},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0782/}
}
TY - JOUR AU - Zorzi, Mattia TI - Graphical model selection for a particular class of continuous-time processes JO - Kybernetika PY - 2019 SP - 782 EP - 801 VL - 55 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0782/ DO - 10.14736/kyb-2019-5-0782 LA - en ID - 10_14736_kyb_2019_5_0782 ER -
Zorzi, Mattia. Graphical model selection for a particular class of continuous-time processes. Kybernetika, Tome 55 (2019) no. 5, pp. 782-801. doi: 10.14736/kyb-2019-5-0782
[1] Alpago, D., Zorzi, M., Ferrante, A.: Identification of sparse reciprocal graphical models. IEEE Control Systems Lett. 2 (2018), 4, 659-664. | DOI
[2] Avventi, E., Lindquist, A., Wahlberg, B.: ARMA identification of graphical models. IEEE Trans. Automat. Control 58 (2013), 1167-1178. | DOI | MR
[3] Baggio, G.: Further results on the convergence of the Pavon-Ferrante algorithm for spectral estimation. IEEE Trans. Automat- Control 63 (2018), 10, 3510-3515. | DOI | MR
[4] Banerjee, O., Ghaoui, L. El, d'Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Machine Learning Res. 9 (2008), 485-516. | MR
[5] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge 2004. | DOI | MR | Zbl
[6] Byrnes, C., Gusev, S., Lindquist, A.: A convex optimization approach to the rational covariance extension problem. SIAM J. Optim. 37 (1998), 211-229. | DOI | MR
[7] Byrnes, C. I., Georgiou, T. T., Lindquist, A.: A new approach to spectral estimation: A tunable high-resolution spectral estimator. IEEE Trans. Signal Process. 48 (2000), 3189-3205. | DOI | MR
[8] Candes, E., Plan, Y.: Matrix completion with noise. Proc. IEEE 98 (2010), 925-936. | DOI
[9] Candes, E., Recht, B.: Exact matrix completion via convex optimization. Comm. ACM 55 (2012), 111-119. | DOI | MR
[10] Chandrasekaran, V., Parrilo, P., Willsky, A.: Latent variable graphical model selection via convex optimization. Ann. Statist. 40 (2010), 1935-2013. | DOI | MR
[11] Chandrasekaran, V., Shah, P.: Relative entropy optimization and its applications. Math. Program. 161 (2017), (1-2), 1-32. | DOI | MR
[12] Cover, T., Thomas, J.: Information Theory. Wiley, New York 1991. | DOI
[13] d'Aspremont, A., Banerjee, O., Ghaoui, L. El: First-order methods for sparse covariance selection. SIAM J. Matrix Analysis Appl. 30 (2008), 56-66. | DOI | MR
[14] Dempster, A.: Covariance selection. Biometrics 28 (1972), 157-175. | DOI | MR
[15] Ferrante, A., Pavon, M.: Matrix completion à la Dempster by the principle of parsimony. IEEE Trans. Inform. Theory 57 (2011), 3925-3931. | DOI | MR
[16] Ferrante, A., Pavon, M., Ramponi, F.: Hellinger versus Kullback-Leibler multivariable spectrum approximation. IEEE Trans. Autom. Control 53 (2008), 954-967. | DOI | MR
[17] Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 (2008), 432-441. | DOI
[18] Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. 2014.
[19] Gu, S., Betzel, R., Mattar, M., Cieslak, M., Delio, P., Grafton, S., Pasqualetti, F., Bassett, D.: Optimal trajectories of brain state transitions. NeuroImage 148 (2017), 305-317. | DOI
[20] Huang, J., Liu, N., Pourahmadi, M., Liu, L.: Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93 (2006), 85-98. | DOI | MR
[21] Huotari, N., Raitamaa, L., Helakari, H., Kananen, J., Raatikainen, V., Rasila, A., Tuovinen, T., Kantola, J., Borchardt, V., Kiviniemi, V., Korhonen, V.: Sampling rate effects on resting state fMRI metrics. Frontiers Neurosci. 13 (2019), 279. | DOI
[22] Jalali, A., Sanghavi, S.: Learning the dependence graph of time series with latent factors. In: International Conference on Machine Learning Edinburgh 2012.
[23] Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009. | MR
[24] Lauritzen, S.: Graphical Models. Oxford University Press, Oxford 1996. | MR
[25] Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Annals Statist. 34 (2006), 1436-1462. | DOI | MR
[26] Pearl, J.: Graphical models for probabilistic and causal reasoning. In: Quantified representation of uncertainty and imprecision, Springer 1998, pp. 367-389. | DOI | MR
[27] Ringh, A., Karlsson, J., Lindquist, A.: Multidimensional rational covariance extension with approximate covariance matching. SIAM J. Control Optim. 56 (2018), 2, 913-944. | DOI | MR
[28] Songsiri, J., Dahl, J., Vandenberghe, L.: Graphical models of autoregressive processes. In: Convex Optimization in Signal Processing and Communications (D. Palomar and Y. Eldar, eds.), Cambridge Univ. Press, Cambridge 2010, pp. 1-29. | MR
[29] Songsiri, J., Vandenberghe, L.: Topology selection in graphical models of autoregressive processes. J. Machine Learning Res. 11 (2010), 2671-2705. | MR
[30] Yue, Z., Thunberg, J., Ljung, L., Gonçalves, J.: Identification of sparse continuous-time linear systems with low sampling rate: Exploring matrix logarithms. arXiv preprint arXiv:1605.08590, 2016.
[31] {Zhu}, B., {Baggio}, G.: On the existence of a solution to a spectral estimation problem a la Byrnes-Georgiou-Lindquist. IEEE Trans. Automat. Control 64 (2019), 2, 820-825. | DOI | MR
[32] Zorzi, M.: A new family of high-resolution multivariate spectral estimators. IEEE Trans. Automat. Control 59 (2014), 892-904. | DOI | MR
[33] Zorzi, M.: Rational approximations of spectral densities based on the Alpha divergence. Math. Control Signals Systems 26 (2014), 259-278. | DOI | MR
[34] Zorzi, M.: An interpretation of the dual problem of the THREE-like approaches. Automatica 62 (2015), 87-92. | DOI | MR
[35] Zorzi, M.: Multivariate Spectral Estimation based on the concept of Optimal Prediction. IEEE Trans. Automat. Control 60 (2015), 1647-1652. | DOI | MR
[36] Zorzi, M.: Empirical Bayesian learning in AR graphical models. Automatica 109 (2019), 108516. | DOI | MR
[37] Zorzi, M., Sepulchre, R.: AR identification of latent-variable graphical models. IEEE Trans. Automat. Control 61 (2016), 2327-2340. | DOI | MR
Cité par Sources :