Keywords: 3D binary object; voxels; decomposition; rectangular blocks; sub-optimal algorithm; tripartite graph; maximum independent set
@article{10_14736_kyb_2019_5_0755,
author = {H\"oschl IV, Cyril and Flusser, Jan},
title = {Close-to-optimal algorithm for rectangular decomposition of {3D} shapes},
journal = {Kybernetika},
pages = {755--781},
year = {2019},
volume = {55},
number = {5},
doi = {10.14736/kyb-2019-5-0755},
zbl = {07177915},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0755/}
}
TY - JOUR AU - Höschl IV, Cyril AU - Flusser, Jan TI - Close-to-optimal algorithm for rectangular decomposition of 3D shapes JO - Kybernetika PY - 2019 SP - 755 EP - 781 VL - 55 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-5-0755/ DO - 10.14736/kyb-2019-5-0755 LA - en ID - 10_14736_kyb_2019_5_0755 ER -
Höschl IV, Cyril; Flusser, Jan. Close-to-optimal algorithm for rectangular decomposition of 3D shapes. Kybernetika, Tome 55 (2019) no. 5, pp. 755-781. doi: 10.14736/kyb-2019-5-0755
[1] Berg, M. d., Cheong, O., Kreveld, M. v., Overmars, M.: Computational Geometry: Algorithms and Applications. 3rd Edition. Springer-Verlag TELOS, Santa Clara 2008. | DOI | MR
[2] Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM 16 (1973), 9, 575-577. | DOI
[3] Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications. CRC, 2007. | DOI | MR
[4] Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combinatorial Optimization. Wiley Series in Discrete Mathematics and Optimization, Wiley 2011. | DOI | MR
[5] Dai, M., Baylou, P., Najim, M.: An efficient algorithm for computation of shape moments from run-length codes or chain codes. Pattern Recognition 25 (1992), 10, 1119-1128. | DOI
[6] Dielissen, V. J., Kaldewaij, A.: Rectangular partition is polynomial in two dimensions but np-complete in three. Inform. Process. Lett. 38 (1991), 1, 1-6. | DOI | MR
[7] Dinic, E. A.: Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Math. Doklady 11 (1970), 1277-1280. | MR
[8] Edmonds, J., Karp, R. M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. Assoc. Comput. Machinery 19 (1972) 2, 248-264. | DOI | MR
[9] Eppstein, D.: Graph-theoretic solutions to computational geometry problems. In: 35th International Workshop on Graph-Theoretic Concepts in Computer Science WG'09, Vol. LNCS 5911, Springer, 2009, pp. 1-16. | DOI | MR
[10] Ferrari, L., Sankar, P. V., Sklansky, J.: Minimal rectangular partitions of digitized blobs. Computer Vision, Graphics, Image Process. 28 (1984), 1, 58-71. | DOI
[11] Flusser, J.: An adaptive method for image registration. Pattern Recognition 25 (1992), 1, 45-54. | DOI
[12] Flusser, J.: Refined moment calculation using image block representation. IEEE Trans. Image Process. 9 (2000), 11, 1977-1978. | DOI | MR
[13] Flusser, J., Suk, T., Zitová, B.: 2D and 3D Image Analysis by Moments. Wiley, 2016. | DOI
[14] Goldberg, A. V., Rao, S.: Beyond the flow decomposition barrier. J. Assoc. Comput. Machinery 45 (1998), 5, 783-797. | DOI | MR
[15] Goldberg, A. V., Tarjan, R. E.: A new approach to the maximum-flow problem. J. Assoc. Comput. Machinery 35 (1988), 4, 921-940. | DOI | MR
[16] Gourley, K. D., Green, D. M.: A polygon-to-rectangle conversion algorithm. IEEE Computer Graphics Appl. 3 (1983) 1, 31-36. | DOI
[17] Imai, H., Asano, T.: Efficient algorithms for geometric graph search problems. SIAM J. Comput. 15 (1986), 2, 478-494. | DOI | MR
[18] Jain, A., Thormählen, T., Ritschel, T., Seidel, H.-P.: Exploring shape variations by 3d-model decomposition and part-based recombination. Computer Graphics Forum 31 (2012), (2pt3), 631-640. | DOI
[19] Kawaguchi, E., Endo, T.: On a method of binary-picture representation and its application to data compression. IEEE Trans. Pattern Analysis Machine Intell. 2 (1980), 1, 27-35. | DOI
[20] Keil, J. M.: Polygon decomposition. In: Handbook of Computational Geometry, Elsevier, 2000, pp. 491-518. | DOI | MR
[21] Levin, A., Fergus, R., Durand, F., Freeman, W. T.: Image and depth from a conventional camera with a coded aperture. In: Special Interest Group on Computer Graphics and Interactive Techniques Conference SIGGRAPH'07, ACM, New York 2007. | DOI
[22] Li, B. C.: A new computation of geometric moments. Pattern Recognition 26 (1993), 1, 109-113. | DOI | MR
[23] Liou, W., Tan, J., Lee, R.: Minimum partitioning simple rectilinear polygons in $O(n \log \log n)-$time. In: Proc. Fifth Annual ACM symposium on Computational Geometry SoCG'89, ACM, New York 1989, pp. 344-353. | DOI
[24] Jr., W. Lipski, Lodi, E., Luccio, F., Mugnai, C., Pagli, L.: On two-dimensional data organization II. In: Fundamenta Informaticae, Vol. II of Annales Societatis Mathematicae Polonae, Series IV, 1979, pp. 245-260. | DOI | MR
[25] Marchand-Maillet, S., Sharaiha, Y. M.: Binary Digital Image Processing: A Discrete Approach. Academic Press, 1999. | DOI | MR
[26] Meagher, D.: Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-d Objects by Computer. Tech. Rep. IPL-TR-80-111, Rensselaer Polytechnic Institute 1980.
[27] Murali, T. M., Agarwal, P. K., Vitter, J. S.: Constructing binary space partitions for orthogonal rectangles in practice. In: Proc. 6th Annual European Symposium on Algorithms, ESA '98, Springer-Verlag, London 1998, pp. 211-222. | DOI | MR
[28] Neal, F. B., Russ, J. C.: Measuring Shape. CRC Pres, 2012. | DOI
[29] Ohtsuki, T.: Minimum dissection of rectilinear regions. In: Proc. IEEE International Conference on Circuits and Systems ISCAS'82, IEEE, 1982, pp. 1210-1213.
[30] Papakostas, G. A., Karakasis, E. G., Koulouriotis, D. E.: Efficient and accurate computation of geometric moments on gray-scale images. Pattern Recognition 41 (2008), 6, 1895-1904. | DOI
[31] Ren, Z., Yuan, J., Liu, W.: Minimum near-convex shape decomposition. IEEE Trans. on Pattern Analysis and Machine Intelligence 35 (2013), 2546-2552. | DOI
[32] Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. In: Proc. Shape Modelling Applications, 2004. | DOI
[33] Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-d models using medial surfaces. Mach. Vision Appl. 19 (2008), 4, 261-275. | DOI
[34] Sivignon, I., Coeurjolly, D.: Minimum decomposition of a digital surface into digital plane segments is NP-hard. Discrete Appl. Math. 157 (2009), 3, 558-570. | DOI | MR
[35] Sossa-Azuela, J. H., Yáñez-Márquez, C., Santiago, J. L. Díaz de León: Computing geometric moments using morphological erosion. Pattern Recognition 34 (2001), 2, 271-276. | DOI
[36] Spiliotis, I. M., Boutalis, Y. S.: Parameterized real-time moment computation on gray images using block techniques. J. Real-Time Image Process. 6 (2011), 2, 81-91. | DOI
[37] Spiliotis, I. M., Mertzios, B. G.: Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans. Image Process. 7 (1998), 11, 1609-1615. | DOI
[38] Suk, T., Flusser, J.: Refined morphological methods of moment computation. In: 20th International Conference on Pattern Recognition ICPR'10, IEEE Computer Society, 2010, pp. 966-970. | DOI
[39] Suk, T., Höschl, C. IV, Flusser, J.: Decomposition of binary images – A survey and comparison. Pattern Recognition 45 (2012), 12, 4279-4291. | DOI
[40] Wu, C.-H., Horng, S.-J., Lee, P.-Z.: A new computation of shape moments via quadtree decomposition. Pattern Recognition 34 (2001), 7, 1319-1330. | DOI
[41] Zakaria, M. F., Vroomen, L. J., Zsombor-Murray, P., Kessel, J. M. van: Fast algorithm for the computation of moment invariants. Pattern Recognition 20 (1987), 6, 639-643. | DOI
[42] Zhou, Y., Yin, K., Huang, H., Zhang, H., Gong, M., Cohen-Or, D.: Generalized cylinder decomposition. ACM Trans. Graph. 34 (2015) 6, 171:1-171:14. | DOI
Cité par Sources :