Inverse optimal control for linearizable nonlinear systems with input delays
Kybernetika, Tome 55 (2019) no. 4, pp. 727-739
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider inverse optimal control for linearizable nonlinear systems with input delays based on predictor control. Under a continuously reversible change of variable, a nonlinear system is transferred to a linear system. A predictor control law is designed such that the closed-loop system is asymptotically stable. We show that the basic predictor control is inverse optimal with respect to a differential game. A mechanical system is provided to illustrate the effectiveness of the proposed method.
We consider inverse optimal control for linearizable nonlinear systems with input delays based on predictor control. Under a continuously reversible change of variable, a nonlinear system is transferred to a linear system. A predictor control law is designed such that the closed-loop system is asymptotically stable. We show that the basic predictor control is inverse optimal with respect to a differential game. A mechanical system is provided to illustrate the effectiveness of the proposed method.
DOI : 10.14736/kyb-2019-4-0727
Classification : 93Cxx, 93Dxx
Keywords: nonlinear systems; inverse optimality; predictor control; input delays
@article{10_14736_kyb_2019_4_0727,
     author = {Cai, Xiushan and Wu, Jie and Zhan, Xisheng and Zhang, Xianhe},
     title = {Inverse optimal control for linearizable nonlinear systems with input delays},
     journal = {Kybernetika},
     pages = {727--739},
     year = {2019},
     volume = {55},
     number = {4},
     doi = {10.14736/kyb-2019-4-0727},
     mrnumber = {4043545},
     zbl = {07177913},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0727/}
}
TY  - JOUR
AU  - Cai, Xiushan
AU  - Wu, Jie
AU  - Zhan, Xisheng
AU  - Zhang, Xianhe
TI  - Inverse optimal control for linearizable nonlinear systems with input delays
JO  - Kybernetika
PY  - 2019
SP  - 727
EP  - 739
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0727/
DO  - 10.14736/kyb-2019-4-0727
LA  - en
ID  - 10_14736_kyb_2019_4_0727
ER  - 
%0 Journal Article
%A Cai, Xiushan
%A Wu, Jie
%A Zhan, Xisheng
%A Zhang, Xianhe
%T Inverse optimal control for linearizable nonlinear systems with input delays
%J Kybernetika
%D 2019
%P 727-739
%V 55
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0727/
%R 10.14736/kyb-2019-4-0727
%G en
%F 10_14736_kyb_2019_4_0727
Cai, Xiushan; Wu, Jie; Zhan, Xisheng; Zhang, Xianhe. Inverse optimal control for linearizable nonlinear systems with input delays. Kybernetika, Tome 55 (2019) no. 4, pp. 727-739. doi: 10.14736/kyb-2019-4-0727

[1] Bekiaris-Liberis, N., Krstic, M.: Compensation of time-varying input and state delays for nonlinear systems. J. Dynamic Systems, Measurement Control 134 (2012), 1-14. | DOI | MR

[2] Bekiaris-Liberis, N., Krstic, M.: Robustness of nonlinear predictor feedback laws to time-and state-dependent delay perturbations. Automatica 49 (2013), 1576-1590. | DOI | MR

[3] Bekiaris-Liberis, N., Krstic, M.: Compensation of wave actuator dynamics for nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 1555-1570. | DOI | MR

[4] Bullo, F., Lewis, A.: Reduction, linearization, and stability of relative equilibria for mechanical systems on riemannian manifolds. Acta Applicandae Mathematicae 99 (2007), 53-95. | DOI | MR

[5] Cai, X., Bekiaris-Liberis, N., Krstic, M.: Input-to-state stability and inverse optimality of linear time-varying-delay predictor feedbacks. IEEE Trans. Automat. Control 63 (2018), 233-240. | DOI | MR

[6] Cai, X., Bekiaris-Liberis, N., Krstic, M.: Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems. Automatica 103 (2019), 549-557. | DOI | MR

[7] Cai, X., Krstic, M.: Nonlinear control under wave actuator dynamics with time- and state-dependent moving boundary. Int. J. Robust. Nonlinear Control 25 (2015), 222-253. | DOI | MR | Zbl

[8] Cai, X., Krstic, M.: Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary. Automatica 68 (2016), 27-38. | DOI | MR

[9] Cai, X., Liao, L., Zhang, J., Zhang, W.: Oberver design for a class of nonlinear system in cascade with counter-convecting transport dynamics. Kybernetika 52 (2016), 76-88. | DOI | MR

[10] Cai, X., Lin, Y., Liu, L.: Universal stabilisation design for a class of non-linear systems with time-varying input delays. IET Control Theory Appl. 9 (2015), 1481-1490. | DOI | MR

[11] Cai, X., Lin, C., Liu, L., Zhan, X.: Inverse optimal control for strict-feedforward nonlinear systems with input delays. Int. J. Robust. Nonlinear Control 28 (2018), 2976-2995. | DOI | MR

[12] Jankovic, M.: Control Lyapunov Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Automat. Control 46 (2001), 1048-1060. | DOI | MR

[13] Jankovic, M.: Control of nonlinear systems with time delay. In: Proc. 42nd IEEE conference on Decision and Control, Maui 2003, pp. 4545-4550. | DOI

[14] Karafyllis, I., Krstic, M.: Predictor Feedback for Delay Systems: Implementations and Approximations. Springer, 2016. | DOI | MR

[15] Krstic, M.: Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems. IEEE Trans. Automat. Control 49 (2004), 1668-1681. | DOI | MR

[16] Krstic, M.: Integrator forwarding control laws for some classes of linearizable feedforward systems. In: Proc. American Control Conference, Boston, Massachusetts 2004, 4360-4365. | DOI

[17] Krstic, M.: Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica 44 (2008), 2930-2935. | DOI | MR

[18] Krstic, M.: Input delay compensation for forward complete and feed forward nonlinear systems. IEEE Trans. Automat. Control 55 (2010), 287-303. | DOI | MR

[19] Krstic, M., Li, Z.: Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans. Automat. Control 43 (1998), 336-350. | DOI | MR

[20] Respondek, W., Ricardo, S.: On linearization of mechanical control systems. In: Proc. 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Bertinoro 2012. | DOI

[21] Tall, I.: Linearizable feedforward systems: A special class. In: Proc. IEEE Multi-conference on Systems and Control, Texas 2008. | DOI | MR

[22] Schaft, A. van der: Linearization of Hamiltonian and gradient systems. IMA J. Math. Control Inform. 1 (1994), 185-198. | DOI

[23] Zhan, X., Cheng, L., Wu, J., Yang, Q.: Optimal modified performance of MIMO networked control systems with multi-parameter constraints. ISA Trans. 84 (2019), 111-117. | DOI

[24] Zhan, X., Z.Guan, Zhang, X., Yuan, F.: Optimal tracking performance and design of networked control systems with packet dropout. J. the Franklin Inst. 350 (2013), 3205-3216. | DOI | MR

[25] Zhan, X., Wu, J., Jiang, T., Jiang, X.: Optimal performance of networked control systems under the packet dropouts and channel noise. ISA Trans. 58 (2015), 214-221. | DOI

[26] Zhang, Z., Xu, S., Zhang, B.: Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity. IEEE Trans. Automatic Control 59 (2014), 1336-1341. | DOI | MR

[27] Zhang, Z., Xu, S., Zhang, B.: Exact tracking control of nonlinear systems with time delays and dead-zone input. Automatica 52 (2015), 272-276. | DOI | MR

Cité par Sources :