Keywords: semi-discrete method; stochastic; Krasnoselskii's fixed point theorem; almost periodicity; global exponential stability
@article{10_14736_kyb_2019_4_0690,
author = {Zhang, Tianwei and Xu, Lijun},
title = {Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays},
journal = {Kybernetika},
pages = {690--713},
year = {2019},
volume = {55},
number = {4},
doi = {10.14736/kyb-2019-4-0690},
mrnumber = {4043543},
zbl = {07177911},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0690/}
}
TY - JOUR AU - Zhang, Tianwei AU - Xu, Lijun TI - Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays JO - Kybernetika PY - 2019 SP - 690 EP - 713 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0690/ DO - 10.14736/kyb-2019-4-0690 LA - en ID - 10_14736_kyb_2019_4_0690 ER -
%0 Journal Article %A Zhang, Tianwei %A Xu, Lijun %T Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays %J Kybernetika %D 2019 %P 690-713 %V 55 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0690/ %R 10.14736/kyb-2019-4-0690 %G en %F 10_14736_kyb_2019_4_0690
Zhang, Tianwei; Xu, Lijun. Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays. Kybernetika, Tome 55 (2019) no. 4, pp. 690-713. doi: 10.14736/kyb-2019-4-0690
[1] Arnold, L., Tudor, C.: Stationary and almost periodic solutions of almost periodic affine stochastic differential equations. Stochastics and Stochast. Reports 64 (1998), 177-193. | DOI | MR
[2] Arunkumar, A., Sakthivel, R., Mathiyalagan, K., Park, J. H.: Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks. ISA Transactions 53 (2014), 1006-1014. | DOI
[3] Bashkirtseva, I.: Controlling the stochastic sensitivity in thermochemical systems under incomplete information. Kybernetika 54 (2018), 96-109. | DOI | MR
[4] Bezandry, P. H., Diagana, T.: Almost Periodic Stochastic Processes. Springer, New York 2011. | DOI | MR
[5] Bouzerdoum, A., Pinter, R. B.: Shunting inhibitory cellular neural networks: derivation and stability analysis. IEEE Trans. Circuits Systems 1 - Fundament. Theory Appl. 40 (1993), 215-221. | DOI | MR
[6] Chen, A., Cao, J., Huang, L.: Almost periodic solution of shunting inhibitory CNNs with delays. Phys. Lett. A 298 (2002), 161-170. | DOI | MR
[7] Dorogovtsev, A. Y., Ortega, O. A.: On the existence of periodic solutions of a stochastic equation in a Hilbert space. Visnik Kiiv. Univ. Ser. Mat. Mekh. 30 (1988), 21-30. | MR
[8] Du, Bo, Liu, Y. R., Abbas, I. A.: Existence and asymptotic behavior results of periodic solution for discrete-time neutral-type neural networks. J. Frank. Inst. 353 (2016), 448-461. | DOI | MR
[9] Fan, Q. Y., Shao, J. Y.: Positive almost periodic solutions for shunting inhibitory cellular neural networks with time-varying and continuously distributed delays. Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1655-1663. | DOI | MR
[10] Hu, M. F., Cao, J. D., Hua, A. H.: Mean square exponential stability for discrete-time stochastic switched static neural networks with randomly occurring nonlinearities and stochastic delay. Neurocomputing 129 (2014), 476-481. | DOI | MR
[11] Hu, S. G., Huang, C. M., Wu, F. K.: Stochastic Differential Equations. Science Press, Beijing 2008. | DOI | MR
[12] Hu, S., Wang, J.: Global robust stability of a class of discrete-time interval neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 53 (2006), 129-138. | DOI | MR
[13] Huang, Z. K., Mohamad, S., Gao, F.: Multi-almost periodicity in semi-discretizations of a general class of neural networks. Math. Computers Simul. 101 (2014), 43-60. | DOI | MR
[14] Huang, Z. K., Wang, X. H., Gao, F.: The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks. Physics Lett. A 350 (2006), 182-191. | DOI | MR
[15] Huang, Z. K., Wang, X. H., Xia, Y. H.: Exponential attractor of $\kappa$-almost periodic sequence solution of discrete-time bidirectional neural networks. Simul. Modell. Practice Theory 18 (2010), 317-337. | DOI
[16] Kawata, T.: Almost Periodic Weakly Stationary Processes, Statistics and Probability: Essays in Honor of C. R. Rao. North-Holland, Amsterdam 1982, pp. 383-396. | MR
[17] Kuang, J. C.: Applied Inequalities. Shandong Science and Technology Press, Shandong 2012.
[18] Lan, Q. X., Niu, H. W., Liu, Y. M., Xu, H. F.: Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems. Kybernetika 53 (2017), 780-802. | DOI | MR
[19] Liu, B., Huang, L.: Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays. Phys. Lett. A 349 (2006), 177-186. | DOI | MR
[20] Liu, D., Wang, L.J., Pan, Y. N., Ma, H. Y.: Mean square exponential stability for discrete-time stochastic fuzzy neural networks with mixed time-varying delay. Neurocomputing 171 (2016), 1622-1628. | DOI
[21] Mohamad, S.: Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks. Physica D 159 (2001), 233-251. | DOI | MR
[22] Mohamad, S., Gopalsamy, K.: Dynamics of a class of discrete-time neural networks and their continuous-time counterparts. Math. Computers Simul. 53 (2000), 1-39. | DOI | MR
[23] Mohamad, S., Gopalsamy, K.: Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl. Math. Comput. 135 (2003), 17-38. | DOI | MR
[24] Mohamad, S., Naim, A. G.: Discrete-time analogues of integro-differential equations modelling bidirectional neural networks. J. Comput. Appl. Math. 138 (2002), 1-20. | DOI | MR
[25] Nagamani, G., Ramasamy, S., Balasubramaniam, P.: Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay. Complexity 21 (2014), 47-58. | DOI | MR
[26] Ou, Y., Liu, H., Si, Y., Feng, Z.: Stability analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 73 (2010), 740-748. | DOI
[27] Raj, S., Ramachandran, R., Rajendiran, S., Cao, J. D.: Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations. Kybernetika 54 (2018), 3-29. | DOI | MR
[28] Şaylı, M., Yılmaz, E.: Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays. Neural Networks 68 (2015), 1-11. | DOI
[29] Smart, D. R.: Fixed Point Theorems. Cambridge University Press, Cambridge 1980. | MR
[30] Swift, R. J.: Almost periodic harmonizable processes. Georgian Math. J. 3 (1996), 275-292. | DOI | MR
[31] Tudor, C.: Almost periodic solutions of affine stochastic evolutions equations. Stochastics and Stochast. Reports 38 (1992), 251-266. | DOI | MR
[32] Wang, P., Li, B., Li, Y. K.: Square-mean almost periodic solutions for impulsive stochastic shunting inhibitory cellular neural networks with delays. Neurocomputing 167 (2015), 76-82. | DOI | MR
[33] Wang, J., Zhang, X. M., Han, Q. L.: Event-Triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 27 (2016), 77-88. | DOI | MR
[34] Xiong, W., Cao, J. D.: Global exponential stability of discrete-time Cohen-Grossberg neural networks. Neurocomputing 64 (2005), 433-446. | DOI
[35] Xiong, L. L., Cheng, J., Cao, J. D., Liu, Z. X.: Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays. Applied Math. Comput. 321 (2018), 672-688. | DOI | MR
[36] Xu, C. J., Li, P. L.: On anti-periodic solutions for neutral shunting inhibitory cellular neural networks with time-varying delays and D operator. Neurocomputing 275 (2018), 377-382. | DOI
[37] Yang, L., Li, Y. K.: Periodic solutions for stochastic shunting inhibitory cellular neural networks with distributed delays. Advances Difference Equations 2014 (2014), 1-37. | DOI | MR
[38] Yao, L. G.: Global exponential convergence of neutral type shunting inhibitory cellular neural networks with d operator. Neural Process. Lett. 45 (2017), 401-409. | DOI
[39] Zhang, T. W.: Multiplicity of positive almost periodic solutions in a delayed Hassell-Varleytype predator-prey model with harvesting on prey. Math. Meth. Appl. Sci. 37 (2014), 686-697. | DOI | MR
[40] Zhang, T. W.: Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays. Int. J. Biomath. 7 (2014), 1450029 (22 pages). | DOI | MR
[41] Zhang, T. W., Gan, X. R.: Almost periodic solutions for a discrete fishing model with feedback control and time delays. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163. | DOI | MR
[42] Zhang, X. M., Han, Q. L.: Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Networks 22 (2011), 1180-1192. | DOI
[43] Zhang, X. M., Han, Q. L.: An overview of recent developments in Lyapunov-Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 313 (2018), 392-401. | DOI
[44] Zhang, X. M., Han, Q. L., Zeng, Z. G.: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities. IEEE Trans. Cybernet. 48 (2018), 1660-1671. | DOI
[45] Zhang, T. W., Liao, Y. Z.: Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay. Kybernetika 53 (2017), 612-629. | DOI | MR
[46] Zhang, H. Y., Qiu, Z. P., Xiong, L. L.: Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump. Neurocomputing 333 (2019), 395-406. | DOI
[47] Zhang, T. W., Xiong, L. L.: Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Applied Mathematics Letters 101 (2020), 106072. | DOI | MR
[48] Zhang, T. W., Yang, L., Xu, L. J.: Stage-structured control on a class of predator-prey system in almost periodic environment. International Journal of Control 2019 (2019), in print. | DOI
[49] Zhang, Z. Q., Zhou, D. M.: Existence and global exponential stability of a periodic solution for a discrete-time interval general BAM neural networks. J. Frank. Inst. 347 (2010), 763-780. | DOI | MR
[50] Zhao, H., Sun, L., Wang, G.: Periodic oscillation of discrete-time bidirectional associative memory neural networks. Neurocomputing 70 (2007), 2924-2930. | DOI
Cité par Sources :