Keywords: ordinal sum; implication; bounded lattice
@article{10_14736_kyb_2019_4_0641,
author = {Kesicio\u{g}lu, M. Nesibe},
title = {Construction methods for implications on bounded lattices},
journal = {Kybernetika},
pages = {641--667},
year = {2019},
volume = {55},
number = {4},
doi = {10.14736/kyb-2019-4-0641},
mrnumber = {4043540},
zbl = {07177908},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0641/}
}
Kesicioğlu, M. Nesibe. Construction methods for implications on bounded lattices. Kybernetika, Tome 55 (2019) no. 4, pp. 641-667. doi: 10.14736/kyb-2019-4-0641
[1] Baczyński, M., Drygaś, P., Król, A., Mesiar, R.: New types of ordinal sum of fuzzy implications. In: Fuzzy systems (FUZZ-IEEE), 2017 IEEE International Conference, 2017. | DOI
[2] Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer, Berlin, Heidelberg, 2008. | MR | Zbl
[3] Birkhoff, G.: Lattice Theory. Third edition. Providence, 1967. | DOI | MR
[4] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets and Systems 132 (2018), 129-143. | DOI | MR
[5] Drygaś, P., Król, A.: Various kinds of fuzzy implications. In: Novel Developments in Uncertainty Represent, and Processing (K. T. Atanassov et al., eds.), Advences in Intelligent Systems and Computing 401, Springer Internat. Publ. AG, 2016, pp. 37-49. | DOI
[6] Drygaś, P., Król, A.: Generating fuzzy implications by ordinal sums. Tatra Mt. Math. Publ. 66 (2016), 39-50. | DOI | MR
[7] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85-121. | DOI | MR | Zbl
[8] Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, Part 1: inference with possibility distributions. Fuzzy Sets and Systems 40 (1991), 143-202. | DOI | MR
[9] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327. | DOI
[10] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817. | DOI
[11] Fodor, J., Rudas, I. J.: Migrative t-norms with respect to continuous ordinal sums. Inform. Sci. 181 (2011), 4860-4866. | DOI | MR
[12] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. | DOI | MR | Zbl
[13] Kesicioğlu, M. N., Mesiar, R.: Ordering based on implications. Inform. Sci. 276 (2014), 377-386. | DOI | MR
[14] Klement, E. P., (eds.), R. Mesiar: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005. | MR
[15] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl
[16] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford. Semigroup Forum 65 (2002), 71-82. | DOI | MR
[17] Ma, Z., Wu, W. M.: Logical operators on complete lattices. Inform. Sci. 55 (1991), 77-97. | DOI | MR | Zbl
[18] Mas, M., Monserrat, M., Torrens, J.: The law of importation for discrete implications. Inform. Sci. 179 (2009), 4208-4218. | DOI | MR
[19] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121. | DOI
[20] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets and Systems 202 (2012), 75-88. | DOI | MR
[21] Mesiar, R., Mesiarová, A.: Residual implications and left-continuous t-norms which are ordinal sum of semigroups. Fuzzy Sets and Systems 143 (2004), 47-57. | DOI | MR
[22] Mesiarová-Zemánková, A.: Ordinal sum construction for uninorms and generalized uninorms. Int. J. Approx. Reason. 76 (2016), 1-17. | DOI | MR
[23] Mesiarová-Zemánková, A.: Ordinal sums of representable uninorms. Fuzzy Sets and Systems 308 (2017), 42-53. | DOI | MR
[24] Riera, J. V., Torrens, J.: Residual implications on the set of discrete fuzzy numbers. Inform. Sci. 247 (2013), 131-143. | DOI | MR
[25] Saminger, S.: On ordinal sum of triangular norms on bounded lattices. Fuzzy Sets and Systems 157 (2006), 1403-1416. | DOI | MR
[26] Su, Y., Xie, A., Liu, H.: On ordinal sum implications. Inform. Sci. 293 (2015), 251-262. | DOI | MR
[27] Xie, A., Liu, H., Zhang, F., Li, C.: On the distributivity of fuzzy implications over continuous Archimedean t-conorms and continuous t-conorms given as ordinal sums. Fuzzy Sets and Systems 205 (2012), 76-100. | DOI | MR
[28] Yager, R. R.: Aggregation operators and fuzzy systems modelling. Fuzzy Sets and Systems 67 (1994), 129-145. | DOI | MR
[29] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111-120. | DOI | MR | Zbl
Cité par Sources :