Keywords: probabilistic merging; information geometry; Kullback–Leibler divergence; Rényi entropy
@article{10_14736_kyb_2019_4_0605,
author = {Adam\v{c}{\'\i}k, Martin},
title = {A note on how {R\'enyi} entropy can create a spectrum of probabilistic merging operators},
journal = {Kybernetika},
pages = {605--617},
year = {2019},
volume = {55},
number = {4},
doi = {10.14736/kyb-2019-4-0605},
mrnumber = {4043538},
zbl = {07177906},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0605/}
}
TY - JOUR AU - Adamčík, Martin TI - A note on how Rényi entropy can create a spectrum of probabilistic merging operators JO - Kybernetika PY - 2019 SP - 605 EP - 617 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0605/ DO - 10.14736/kyb-2019-4-0605 LA - en ID - 10_14736_kyb_2019_4_0605 ER -
Adamčík, Martin. A note on how Rényi entropy can create a spectrum of probabilistic merging operators. Kybernetika, Tome 55 (2019) no. 4, pp. 605-617. doi: 10.14736/kyb-2019-4-0605
[1] Adamčík, M.: The information geometry of Bregman divergences and some applications in multi-expert reasoning. Entropy 16 (2014), 6338-6381. | DOI | MR
[2] Adamčík, M.: Collective Reasoning under Uncertainty and Inconsistency.
[3] Adamčík, M.: On the applicability of the ‘number of possible states’ argument in multi-expert reasoning. J. Appl. Logic 19 (2016), 20-49. | DOI | MR
[4] Adamčík, M.: A logician's approach to meta-analysis with unexplained heterogeneity. J. Biomed. Inform. 71 (2017), 110-129. | DOI
[5] Adamčík, M., Wilmers, G. M.: Probabilistic merging operators. Logique Analyse 228 (2014), 563-590. | DOI | MR
[6] Amari, S., Cichocki, A.: Families of Alpha- Beta- and Gamma- divergences: Flexible and robust measures of similarities. Entropy 12 (2010), 1532-1568. | DOI | MR
[7] Basu, A., Harris, I. R., Hjort, N., Jones, M.: Robust and efficient estimation by minimising a density power divergence. Biometrika 85 (1998), 549-559. | DOI | MR
[8] Bregman, L. M.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Mathematics Math. Physics 1 (1967), 200-217. | DOI | MR
[9] Hawes, P.: Investigation of Properties of Some Inference Processes.
[10] Jaynes, E. T.: Where do we stand on maximum entropy?. In: The Maximum Entropy Formalism (R. D. Levine, M. Tribus, eds.), M.I.T. Press, 1979, pp. 15-118. | MR
[11] Kern-Isberner, G., Rödder, W.: Belief revision and information fusion on optimum entropy. Int. J. Intell. Systems 19 (2004), 837-857. | DOI | Zbl
[12] Osherson, D., Vardi, M.: Aggregating disparate estimates of chance. Games Econom. Behavior 56 (2006), 148-173. | DOI | MR | Zbl
[13] Paris, J. B.: The Uncertain Reasoner Companion. Cambridge University Press, Cambridge 1994. | MR
[14] Paris, J. B., Vencovská, A.: On the applicability of maximum entropy to inexact reasoning. Int. J. Approx. Reason. 3 (1989), 1-34. | DOI | MR | Zbl
[15] Paris, J. B., Vencovská, A.: A note on the inevitability of maximum entropy. Int. J. Approx. Reason. 4 (1990), 183-224. | DOI | MR
[16] Predd, J. B., Osherson, D. N., Kulkarni, S. R, Poor, H. V.: Aggregating probabilistic forecasts from incoherent and abstaining experts. Decision Analysis 5 (2008), 177-189. | DOI
[17] Rényi, A.: On measures of entropy and information. In: Proc. Fourth Berkeley Symposium on Mathematics, Statistics and Probability 1 (1961), 547-561. | MR | Zbl
[18] Shannon, C. E.: A mathematical theory of communication. Bell System Techn. J. 27 (1948), 379-423, 623-656. | DOI | MR | Zbl
[19] Wilmers, G. M.: A foundational approach to generalising the maximum entropy inference process to the multi-agent context. Entropy 17 (2015), 594-645. | DOI | MR
Cité par Sources :