A note on how Rényi entropy can create a spectrum of probabilistic merging operators
Kybernetika, Tome 55 (2019) no. 4, pp. 605-617.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we present a result that relates merging of closed convex sets of discrete probability functions respectively by the squared Euclidean distance and the Kullback-Leibler divergence, using an inspiration from the Rényi entropy. While selecting the probability function with the highest Shannon entropy appears to be a convincingly justified way of representing a closed convex set of probability functions, the discussion on how to represent several closed convex sets of probability functions is still ongoing. The presented result provides a perspective on this discussion. Furthermore, for those who prefer the standard minimisation based on the squared Euclidean distance, it provides a connection to a probabilistic merging operator based on the Kullback-Leibler divergence, which is closely connected to the Shannon entropy.
DOI : 10.14736/kyb-2019-4-0605
Classification : 52A99, 52C99
Keywords: probabilistic merging; information geometry; Kullback–Leibler divergence; Rényi entropy
@article{10_14736_kyb_2019_4_0605,
     author = {Adam\v{c}{\'\i}k, Martin},
     title = {A note on how {R\'enyi} entropy can create a spectrum of probabilistic merging operators},
     journal = {Kybernetika},
     pages = {605--617},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2019},
     doi = {10.14736/kyb-2019-4-0605},
     mrnumber = {4043538},
     zbl = {07177906},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0605/}
}
TY  - JOUR
AU  - Adamčík, Martin
TI  - A note on how Rényi entropy can create a spectrum of probabilistic merging operators
JO  - Kybernetika
PY  - 2019
SP  - 605
EP  - 617
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0605/
DO  - 10.14736/kyb-2019-4-0605
LA  - en
ID  - 10_14736_kyb_2019_4_0605
ER  - 
%0 Journal Article
%A Adamčík, Martin
%T A note on how Rényi entropy can create a spectrum of probabilistic merging operators
%J Kybernetika
%D 2019
%P 605-617
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0605/
%R 10.14736/kyb-2019-4-0605
%G en
%F 10_14736_kyb_2019_4_0605
Adamčík, Martin. A note on how Rényi entropy can create a spectrum of probabilistic merging operators. Kybernetika, Tome 55 (2019) no. 4, pp. 605-617. doi : 10.14736/kyb-2019-4-0605. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-4-0605/

Cité par Sources :