Keywords: extensions; algebraic completely distributive lattices; fuzzy connectives
@article{10_14736_kyb_2019_3_0472,
author = {Liu, Hui and Zhao, Bin},
title = {Extensions of fuzzy connectives on {ACDL}},
journal = {Kybernetika},
pages = {472--494},
year = {2019},
volume = {55},
number = {3},
doi = {10.14736/kyb-2019-3-0472},
mrnumber = {4015994},
zbl = {07144949},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0472/}
}
Liu, Hui; Zhao, Bin. Extensions of fuzzy connectives on ACDL. Kybernetika, Tome 55 (2019) no. 3, pp. 472-494. doi: 10.14736/kyb-2019-3-0472
[1] Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, Springer-Verlag, Berlin Heidelberg 2008. | MR | Zbl
[2] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. | DOI | MR
[3] Çaylı, G. D., Drygaś, P.: Some properties of idempotent uninorms on a special class of bounded lattices. Inform. Sci. 422 (2018), 352-363. | DOI | MR
[4] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 394-417. | DOI | MR
[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inform. Sci. 367-368 (2016), 221-231. | DOI | MR
[6] Davey, B. A., Priestley, H. A.: Introduction to lattices and Order. Cambridge University Press, Cambridge 1990. | MR
[7] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. | DOI | MR | Zbl
[8] Deschrijver, G.: Uninorms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory. Inform. Sci. 244 (2013), 48-59. | DOI | MR
[9] Jenei, S., Baets, B. De: On the direct decomposability of t-norms on product lattices. Fuzzy Sets Syst. 139 (2003), 699-707. | DOI | MR
[10] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71. | DOI | MR
[11] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. | DOI | MR
[12] Karaçal, F., Sağiroğlu, Y.: Infinitely $\bigvee$-distributive t-norms on complete lattices and pseudo-complements. Fuzzy Sets Syst. 160 (2009), 32-43. | DOI | MR
[13] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl
[14] Palmeira, E. S., Bedregal, B. C.: Extensions of fuzzy logic operators defined on bounded lattices via retraction. Comput. Math. Appl. 63 (2012), 1026-1038. | DOI | MR
[15] Palmeira, E. S., Bedregal, B. C.: On the extension of lattice-valued implications via retractions. Fuzzy Sets Syst. 240 (2014), 66-85. | DOI | MR
[16] Palmeira, E. S., Bedregal, B. C., Mesiar, R., Fernandez, J.: A new way to extend t-norms, t-conorms and negations. Fuzzy Sets Syst. 240 (2014), 1-21. | DOI | MR
[17] Saminger-Platz, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416. | DOI | MR
[18] Saminger-Platz, S., Klement, E. P., Mesiar, R.: On extensions of triangular norms on bounded lattices. Indag. Math. 19 (2008), 1, 135-150. | DOI | MR
[19] Wang, Z. D., Fang, J. X: On the direct decomposability of pseudo-t-norms, t-norms and implication operators on product lattices. Fuzzy Sets Syst. 158 (2007), 2494-2503. | DOI | MR
[20] Wang, Z. D., Yu, Y. D: Pseudo-t-norms and implication operators on a complete Brouwerian lattice. Fuzzy Sets Syst. 132 (2002), 113-124. | DOI | MR
[21] Yılmaz, Ş., Kazancı, O.: Constructions of triangular norms on lattices by means of irreducible elements. Inform. Sci. 397-398 (2017), 110-117. | DOI
Cité par Sources :