Extensions of fuzzy connectives on ACDL
Kybernetika, Tome 55 (2019) no. 3, pp. 472-494
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main goal of this paper is to construct fuzzy connectives on algebraic completely distributive lattice(ACDL) by means of extending fuzzy connectives on the set of completely join-prime elements or on the set of completely meet-prime elements, and discuss some properties of the new fuzzy connectives. Firstly, we present the methods to construct t-norms, t-conorms, fuzzy negations valued on ACDL and discuss whether De Morgan triple will be kept. Then we put forward two ways to extend fuzzy implications and also make a study on the behaviors of $R$-implication and reciprocal implication. Finally, we construct two classes of infinitely $\bigvee$-distributive uninorms and infinitely $\bigwedge$-distributive uninorms.
The main goal of this paper is to construct fuzzy connectives on algebraic completely distributive lattice(ACDL) by means of extending fuzzy connectives on the set of completely join-prime elements or on the set of completely meet-prime elements, and discuss some properties of the new fuzzy connectives. Firstly, we present the methods to construct t-norms, t-conorms, fuzzy negations valued on ACDL and discuss whether De Morgan triple will be kept. Then we put forward two ways to extend fuzzy implications and also make a study on the behaviors of $R$-implication and reciprocal implication. Finally, we construct two classes of infinitely $\bigvee$-distributive uninorms and infinitely $\bigwedge$-distributive uninorms.
DOI : 10.14736/kyb-2019-3-0472
Classification : 03B52, 03E72, 06D10
Keywords: extensions; algebraic completely distributive lattices; fuzzy connectives
@article{10_14736_kyb_2019_3_0472,
     author = {Liu, Hui and Zhao, Bin},
     title = {Extensions of fuzzy connectives on {ACDL}},
     journal = {Kybernetika},
     pages = {472--494},
     year = {2019},
     volume = {55},
     number = {3},
     doi = {10.14736/kyb-2019-3-0472},
     mrnumber = {4015994},
     zbl = {07144949},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0472/}
}
TY  - JOUR
AU  - Liu, Hui
AU  - Zhao, Bin
TI  - Extensions of fuzzy connectives on ACDL
JO  - Kybernetika
PY  - 2019
SP  - 472
EP  - 494
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0472/
DO  - 10.14736/kyb-2019-3-0472
LA  - en
ID  - 10_14736_kyb_2019_3_0472
ER  - 
%0 Journal Article
%A Liu, Hui
%A Zhao, Bin
%T Extensions of fuzzy connectives on ACDL
%J Kybernetika
%D 2019
%P 472-494
%V 55
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0472/
%R 10.14736/kyb-2019-3-0472
%G en
%F 10_14736_kyb_2019_3_0472
Liu, Hui; Zhao, Bin. Extensions of fuzzy connectives on ACDL. Kybernetika, Tome 55 (2019) no. 3, pp. 472-494. doi: 10.14736/kyb-2019-3-0472

[1] Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, Springer-Verlag, Berlin Heidelberg 2008. | MR | Zbl

[2] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. | DOI | MR

[3] Çaylı, G. D., Drygaś, P.: Some properties of idempotent uninorms on a special class of bounded lattices. Inform. Sci. 422 (2018), 352-363. | DOI | MR

[4] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 394-417. | DOI | MR

[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inform. Sci. 367-368 (2016), 221-231. | DOI | MR

[6] Davey, B. A., Priestley, H. A.: Introduction to lattices and Order. Cambridge University Press, Cambridge 1990. | MR

[7] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. | DOI | MR | Zbl

[8] Deschrijver, G.: Uninorms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory. Inform. Sci. 244 (2013), 48-59. | DOI | MR

[9] Jenei, S., Baets, B. De: On the direct decomposability of t-norms on product lattices. Fuzzy Sets Syst. 139 (2003), 699-707. | DOI | MR

[10] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71. | DOI | MR

[11] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. | DOI | MR

[12] Karaçal, F., Sağiroğlu, Y.: Infinitely $\bigvee$-distributive t-norms on complete lattices and pseudo-complements. Fuzzy Sets Syst. 160 (2009), 32-43. | DOI | MR

[13] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl

[14] Palmeira, E. S., Bedregal, B. C.: Extensions of fuzzy logic operators defined on bounded lattices via retraction. Comput. Math. Appl. 63 (2012), 1026-1038. | DOI | MR

[15] Palmeira, E. S., Bedregal, B. C.: On the extension of lattice-valued implications via retractions. Fuzzy Sets Syst. 240 (2014), 66-85. | DOI | MR

[16] Palmeira, E. S., Bedregal, B. C., Mesiar, R., Fernandez, J.: A new way to extend t-norms, t-conorms and negations. Fuzzy Sets Syst. 240 (2014), 1-21. | DOI | MR

[17] Saminger-Platz, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416. | DOI | MR

[18] Saminger-Platz, S., Klement, E. P., Mesiar, R.: On extensions of triangular norms on bounded lattices. Indag. Math. 19 (2008), 1, 135-150. | DOI | MR

[19] Wang, Z. D., Fang, J. X: On the direct decomposability of pseudo-t-norms, t-norms and implication operators on product lattices. Fuzzy Sets Syst. 158 (2007), 2494-2503. | DOI | MR

[20] Wang, Z. D., Yu, Y. D: Pseudo-t-norms and implication operators on a complete Brouwerian lattice. Fuzzy Sets Syst. 132 (2002), 113-124. | DOI | MR

[21] Yılmaz, Ş., Kazancı, O.: Constructions of triangular norms on lattices by means of irreducible elements. Inform. Sci. 397-398 (2017), 110-117. | DOI

Cité par Sources :