Keywords: rotary inverted pendulum; sliding mode control; dynamical systems
@article{10_14736_kyb_2019_3_0455,
author = {Idrees, Muhammad and Muhammad, Shah and Ullah, Saif},
title = {Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum},
journal = {Kybernetika},
pages = {455--471},
year = {2019},
volume = {55},
number = {3},
doi = {10.14736/kyb-2019-3-0455},
mrnumber = {4015993},
zbl = {07144948},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0455/}
}
TY - JOUR AU - Idrees, Muhammad AU - Muhammad, Shah AU - Ullah, Saif TI - Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum JO - Kybernetika PY - 2019 SP - 455 EP - 471 VL - 55 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0455/ DO - 10.14736/kyb-2019-3-0455 LA - en ID - 10_14736_kyb_2019_3_0455 ER -
%0 Journal Article %A Idrees, Muhammad %A Muhammad, Shah %A Ullah, Saif %T Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum %J Kybernetika %D 2019 %P 455-471 %V 55 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0455/ %R 10.14736/kyb-2019-3-0455 %G en %F 10_14736_kyb_2019_3_0455
Idrees, Muhammad; Muhammad, Shah; Ullah, Saif. Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum. Kybernetika, Tome 55 (2019) no. 3, pp. 455-471. doi: 10.14736/kyb-2019-3-0455
[1] Antonio-Toledo, M. E., Sanchez, E. N., Alanis, A. Y., Florez, J., Perez-Cisneros, M. A.: Real-time integral backstepping with sliding mode control for a quadrotor UAV. IFAC-Papers Online 51 (2018), 549-554. | DOI
[2] Butt, Y. A.: Robust stabilization of a class of nonholonomic systems using logical switching and integral sliding mode control. Alexandria Engrg. J. 57 (2018), 1591-1596. | DOI
[3] Baker, G. J., Blackburn, J. A.: The Pendulum: A Case Study in Physics. Oxford University Press, New York 2002. | MR
[4] Chen, Y. F., Huang, A. C.: Adaptive control of rotary inverted pendulum system with time-varying uncertainties. Nonlinear Dynamics 76 (2014), 95-102. | DOI | MR
[5] Choi, J. J., Kim, J. S.: Robust control for rotational inverted pendulums using output feedback sliding mode controller and disturbance observer. KSME Int. J. 17 (2003), 1466-1474. | DOI
[6] Coban, R., Ata, B.: Decoupled sliding mode control of an inverted pendulum on a cart: An experimental study. In: IEEE International Conference on Advanced Intelligent Mechatronics, Germany 2017. | DOI
[7] Furuta, K., Yamakita, M., Kobayashi, S.: Swing-up control of inverted pendulum using pseudo-state feedback. J. Systems Control Engrg. 206 (1992), 263-269. | DOI
[8] Gao, W., Hung, J. C.: Variable structure control of nonlinear systems: A new approach. IEEE Trans. Industr. Electronics 40 (1993), 45-55. | DOI | MR
[9] Grasser, F., D{$^\prime$}Arrigo, A., Colombi, S., Rufer, A. C.: Joe: a mobile, inverted pendulum. IEEE Trans. Industr. Electron. 49 (2002), 107-114. | DOI
[10] Hassanzadeh, I., Mobayen, S.: Controller design for rotary inverted pendulum system using evolutionary algorithms. Math. Problems Engrg. 2011 (2011), 1-17. | DOI
[11] Irfan, J., Rehan, J., Zhao, J., Rizwan, J., Abdus, S.: Mathematical model analysis and control algorithms design based on state feedback method of rotary inverted pendulum. Int. J. Research Engrg. Technol. 1 (2013), 41-50.
[12] Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X.: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerospace Science Technol. 68 (2017), 299-307. | DOI
[13] Jadlovska, S., Sarnovsky, J.: Modelling of classical and rotary inverted pendulum systems: A generalized approach. J. Electr. Engrg. 64 (2013), 12-19. | DOI
[14] Jose, A., Augustine, C., Malola, S. M., Chacko, K.: Performance study of PID controller and LQR technique for inverted pendulum. World J. Engrg. Technol. 3 (2015), 76-81. | DOI
[15] Kchaou, A., Naamane, A., Koubaa, Y., M'sirdi, N.: Second order sliding mode-based MPPT control for photovoltaic applications. Solar Energy 155 (2017), 758-769. | DOI
[16] Kaynak, O., Erbatur, K., Ertugrul, M.: The fusion of computationally intelligent methodologies and sliding mode control-A survey. IEEE Trans. Industr. Electron. 48 (2001), 4-17. | DOI
[17] Kurode, S., Chalanga, A., Bandyopadhyay, B.: Swing-up and stabilization of rotary inverted pendulum using sliding modes. In: Preprints of the 18th IFAC World Congress, Milano 2011. | DOI
[18] Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A.: Fuzzy sliding mode control of rotary inverted pendulum. In: Proc. 5th IEEE International Conference on Computational Cybernetics, Tunisia 2007. | DOI
[19] Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A.: Sliding mode control of rotary inverted pendulum. In: Proc. 15th Mediterannean Conference on Control and Automation, Greece 2007. | DOI
[20] Liu, X., Vargas, A. N., Yu, X., Xu, L.: Stabilizing two-dimensional stochastic systems through sliding mode control. J. Franklin Inst. 354 (2017), 5813-5824. | DOI | MR
[21] Lu, B., Fang, Y., Sun, N.: Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics 47 (2017), 116-125. | DOI
[22] Lin, X., Nie, J., Jiao, Y., Liang, K., Li, H.: Adaptive fuzzy output feedback stabilization control for the underactuated surface vessel. Appl. Ocean Res. 74 (2018), 40-48. | DOI
[23] Lo, J. C., Kuo, Y. H.: Decoupled fuzzy sliding-mode control. IEEE Trans. Fuzzy Systems 6 (1998), 426-435. | DOI
[24] Muskinja, N., Tovornik, B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Industr. Electron. 53 (2006), 631-639. | DOI
[25] Mei, H., He, Z.: Study on stability control for single link rotary inverted pendulum. In: Proc. International Conference on Mechanic Automation and Control Engineering, Wuhan 2010. | DOI
[26] Mon, Y. J., Lin, C. M.: Hierarchical fuzzy sliding-mode control. In: Proc. IEEE International Conference on Fuzzy Systems, Greece 2002. | DOI
[27] Ngo, Q. H., Nguyen, N. P., Nguyen, C. N., Tran, T. H., Ha, Q. P.: Fuzzy sliding mode control of an offshore container crane. Ocean Engrg. 140 (2017), 125-134. | DOI
[28] Nagarale, R., Patre, B.: Decoupled neural fuzzy sliding mode control of nonlinear systems. In: IEEE International Conference on Fuzzy Systems, Hyderabad 2013. | DOI
[29] Oltean, S. E.: Swing-up and stabilization of the rotational inverted pendulum using PD and fuzzy-PD controllers. Procedia Technol. 12 (2014), 57-64. | DOI
[30] Phuong, N., Loc, H., Tuan, T.: Control of two wheeled inverted pendulum using sliding mode technique. Int. J. Engrg. Res. Appl. 3 (2013), 1276-1282.
[31] Perruquetti, W., Barbot, J. P.: Sliding Mode Control in Engineering. CRC Press, 2002. | DOI
[32] Qian, D., Yi, J.: Hierarchical Sliding Mode Control for Under-actuated Cranes. Springer-Verlag, Berlin 2015. | DOI | MR
[33] Qureshi, M. S., Swarnkar, P., Gupta, S.: A supervisory on-line tuned fuzzy logic based sliding mode control for robotics: An application to surgical robots. Robotics Autonom. Systems 109 (2018), 68-85. | DOI
[34] Qian, D., Yi, J., Zhao, D.: Hierarchical sliding mode control for a class of simo under-actuated systems. Control Cybernet. 37 (2008), 159-175. | MR
[35] Qian, D., Yi, J., Zhao, D., Hao, Y.: Hierarchical sliding mode control for series double inverted pendulums system. In: Proc. International Conference on Intelligent Robots and Systems, Beijing 2006. | DOI
[36] Song, Z., Sun, K., Ling, S.: Stabilization and synchronization for a mechanical system via adaptive sliding mode control. ISA Trans. 68 (2017), 353-366. | DOI
[37] Solanes, J. E., Gracia, L., Munoz-Benavent, P., Miro, J. V., Girbes, V., Tornero, J.: Human-robot cooperation for robust surface treatment using non-conventional sliding mode control. ISA Trans. 80 (2018), 528-541. | DOI
[38] Slotine, J. J. E.: Sliding controller design for nonlinear systems. Int. J. Control 40 (1984), 421-434. | DOI
[39] Sirisha, V., Junghare, A. S.: A comparative study of controllers for stabilizing a rotary inverted pendulum. Int. J. Chaos, Control, Modell. Simul. 3 (2014), 1-13. | DOI
[40] Slotine, J. J. E., Li, W.: Applied Nonlinear Control. Prentice Hall International Inc., 1991. | Zbl
[41] Tapia, A., Bernal, M., Fridman, L.: Nonlinear sliding mode control design: An LMI approach. Systems Control Lett. 104 (2017), 38-44. | DOI | MR
[42] Tuan, L. A., Lee, S. G., Nho, L. C., Cuong, H. M.: Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable. Proc. Inst. Mechan. Engineers, Part I: J. Systems Control Engrg. 229 (2015), 662-674. | DOI
[43] Tuan, L. A., Cuong, H. M., Lee, S. G., Nho, L. C., Moon, K.: Nonlinear feedback control of container crane mounted on elastic foundation with the flexibility of suspended cable. J. Vibration Control 22 (2016), 3067-3078. | DOI | MR
[44] Utkin, V. I., Korovin, S. K.: Application of sliding mode to static optimization. Automatic Remote Control 4 (1972), 570-579. | MR
[45] Utkin, V. I., Yagn, K. D.: Methods for construction of discontinuity planes in multidimensional variable structure systems. Automat. Remote Control 39 (1978), 72-77. | MR
[46] Utkin, V. I., Yagn, K. D.: Variable structure systems with sliding modes. IEEE Trans. Automat. Control 22 (1997), 212-222. | DOI | MR
[47] Utkin, V. I., Guldner, J., Shi, J.: Sliding Mode Control in Electro-Mechanical Systems. CRC Press, 2009. | DOI | MR
[48] Wu, Y. J., Li, G. F.: Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer. Mechan. Systems Signal Process. 98 (2018), 402-414. | DOI
[49] Wu, A., Zhang, X., Zhang, Z.: A control system based on the Lagrange modeling method for a single link rotary inverted pendulum. Engrg. Sci. 7 (2005), 11-15.
[50] Wen, J., Shi, Y., Lu, X.: Stabilizing a rotary inverted pendulum based on logarithmic Lyapunov function. J. Control Science Engrg. 2017 (2017), 1-11. | DOI | MR
[51] Yigit, I.: Model free sliding mode stabilizing control of a real rotary inverted pendulum. J. Vibration Control 23 (2017), 1645-1662. | DOI | MR
[52] Yue, M., An, C., Du, Y., Sun, J.: Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner. Fuzzy Sets Systems 290 (2016), 158-177. | DOI | MR
[53] Zhang, J., Zhang, Q., Wang, Y.: A new design of sliding mode control for Markovian jump systems based on stochastic sliding surface. Inform. Sci. 391 (2017), 9-27. | DOI
[54] Zhao, Y., Huang, P., Zhang, F.: Dynamic modeling and super-twisting sliding mode control for tethered space robot. Acta Astronautica 143 (2018), 310-321. | DOI
Cité par Sources :