Random noise and perturbation of copulas
Kybernetika, Tome 55 (2019) no. 2, pp. 422-434
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a random vector $(X,Y)$ characterized by a copula $C_{X,Y}$ we study its perturbation $C_{X+Z,Y}$ characterizing the random vector $(X+Z,Y)$ affected by a noise $Z$ independent of both $X$ and $Y$. Several examples are added, including a new comprehensive parametric copula family $\left(\mathcal{C}_k \right) _{k \in [-\infty, \infty]}$.
For a random vector $(X,Y)$ characterized by a copula $C_{X,Y}$ we study its perturbation $C_{X+Z,Y}$ characterizing the random vector $(X+Z,Y)$ affected by a noise $Z$ independent of both $X$ and $Y$. Several examples are added, including a new comprehensive parametric copula family $\left(\mathcal{C}_k \right) _{k \in [-\infty, \infty]}$.
DOI : 10.14736/kyb-2019-2-0422
Classification : 60E05, 62H20
Keywords: copula; noise; perturbation of copula; random vector
@article{10_14736_kyb_2019_2_0422,
     author = {Mesiar, Radko and Sheikhi, Ayyub and Komorn{\'\i}kov\'a, Magda},
     title = {Random noise and perturbation of copulas},
     journal = {Kybernetika},
     pages = {422--434},
     year = {2019},
     volume = {55},
     number = {2},
     doi = {10.14736/kyb-2019-2-0422},
     mrnumber = {4014595},
     zbl = {07144946},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0422/}
}
TY  - JOUR
AU  - Mesiar, Radko
AU  - Sheikhi, Ayyub
AU  - Komorníková, Magda
TI  - Random noise and perturbation of copulas
JO  - Kybernetika
PY  - 2019
SP  - 422
EP  - 434
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0422/
DO  - 10.14736/kyb-2019-2-0422
LA  - en
ID  - 10_14736_kyb_2019_2_0422
ER  - 
%0 Journal Article
%A Mesiar, Radko
%A Sheikhi, Ayyub
%A Komorníková, Magda
%T Random noise and perturbation of copulas
%J Kybernetika
%D 2019
%P 422-434
%V 55
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0422/
%R 10.14736/kyb-2019-2-0422
%G en
%F 10_14736_kyb_2019_2_0422
Mesiar, Radko; Sheikhi, Ayyub; Komorníková, Magda. Random noise and perturbation of copulas. Kybernetika, Tome 55 (2019) no. 2, pp. 422-434. doi: 10.14736/kyb-2019-2-0422

[1] Cherubini, U., Gobbi, F., Mulinacci, S.: Convolution Copula Econometrics. Springer-Briefs in Statistics 2016. | DOI | MR

[2] Durante, F., Sempi, C.: Principles of Copula Theory. CRC Chapman and Hall, Boca Raton 2016. | DOI | MR

[3] Gijbels, I., Herrmann, K.: On the distribution of sums of random variables with copula-induced dependence. Insurance Math. Econom. 59 (2014), C, 27-44. | DOI | MR

[4] Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall 1997. | DOI | MR | Zbl

[5] Nelsen, R. B.: An introduction to copulas. Second edition. Springer Series in Statistics, Springer-Verlag, New York 2006. | DOI | MR

[6] Sklar, A.: Fonctions de répartition a n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris \mi{8} (1959), 229-231. | MR

[7] Wang, R.: Sum of arbitrarily dependent random variables. Electron. J. Probab. 19 (2014), 84, 1-18. | DOI | MR

[8] Williamson, R. C., Downs, R. C.: Probabilistic arithmetic I: numerical methods for calculating convolutions and dependency bounds. Int. J. Approx. Reason. 4 (2014), 89-158. | DOI | MR

Cité par Sources :