Keywords: nonlinear output regulation; linear matrix inequality; twin rotor; real-time
@article{10_14736_kyb_2019_2_0385,
author = {Armenta, Carlos and \'Alvarez, Jorge and M\'arquez, Raymundo and Bernal, Miguel},
title = {A practical solution to implement nonlinear output regulation via dynamic mappings},
journal = {Kybernetika},
pages = {385--401},
year = {2019},
volume = {55},
number = {2},
doi = {10.14736/kyb-2019-2-0385},
mrnumber = {4014593},
zbl = {07144944},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0385/}
}
TY - JOUR AU - Armenta, Carlos AU - Álvarez, Jorge AU - Márquez, Raymundo AU - Bernal, Miguel TI - A practical solution to implement nonlinear output regulation via dynamic mappings JO - Kybernetika PY - 2019 SP - 385 EP - 401 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0385/ DO - 10.14736/kyb-2019-2-0385 LA - en ID - 10_14736_kyb_2019_2_0385 ER -
%0 Journal Article %A Armenta, Carlos %A Álvarez, Jorge %A Márquez, Raymundo %A Bernal, Miguel %T A practical solution to implement nonlinear output regulation via dynamic mappings %J Kybernetika %D 2019 %P 385-401 %V 55 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0385/ %R 10.14736/kyb-2019-2-0385 %G en %F 10_14736_kyb_2019_2_0385
Armenta, Carlos; Álvarez, Jorge; Márquez, Raymundo; Bernal, Miguel. A practical solution to implement nonlinear output regulation via dynamic mappings. Kybernetika, Tome 55 (2019) no. 2, pp. 385-401. doi: 10.14736/kyb-2019-2-0385
[1] Ahmed, Q., Bhatti, A. I., Iqbal, S.: Robust decoupling control design for twin rotor system using Hadamard weights. In: Control Applications, (CCA) and Intelligent Control, (ISIC), 2009 IEEE, pp. 1009-1014. | DOI
[2] Bernal, M., Marquez, R., Estrada, V., Castillo, B.: An element-wise linear matrix inequality approach for output regulation problems. In: World Automation Congress (WAC) 2012, Puerto Vallarta 2012, pp. 1-6.
[3] Bernal, M., Marquez, R., Estrada-Manzo, V., Castillo-Toledo, B.: Nonlinear output regulation via Takagi-Sugeno fuzzy mappings: A full-information LMI approach. In: IEEE International Conference on Fuzzy Systems 2012, pp. 1-7. | DOI
[4] {Boyd}, S., Ghaoui, L. E., Feron, E., Belakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Studies In Applied Mathematics 15, Philadelphia 1994. | DOI | MR
[5] Byrnes, C. I., Isidori, A.: Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation. IEEE Trans. Automat. Control 48 (2003), 10, 1712-1723. | DOI | MR
[6] Byrnes, C. I., Isidori, A.: Nonlinear internal models for output regulation. IEEE Trans. Automat. Control 49 (2004), 12, 2244-2247. | DOI | MR
[7] Byrnes, C. I., Priscoli, F. D., Isidori, A.: Output regulation of uncertain nonlinear systems. Springer Science and Business Media, 2012. | DOI | MR
[8] Davison, E.: The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automat. Control 21 (1976), 1, 25-34. | DOI | MR
[9] Duan, G. R., Yu, H. H.: LMIs in Control Systems: Analysis, Design and Applications. CRC Press, 2013. | MR
[10] Ltd, Feedback instruments, Manual, East Sussex. TRMS 33-949S User: Twin Rotor MIMO System Control Experiments, 1998.
[11] Francis, B. A.: The linear multivariable regulator problem. SIAM J. Control Optim. 15 (1077), 486-505. | DOI | MR
[12] Francis, B. A., Wonham, W. M.: The internal model principle for linear multivariable regulators. J. Appl. Math. Optim. 2 (1975), 170-194. | DOI | MR
[13] Glauser, M., Lin, Z., Allaire, P. E.: Modeling and control of a partial body weight support system: an output regulation approach. IEEE Trans. Control Systems Technol. 18 (2010), 2, 480-490. | DOI
[14] Henriques, J., Gil, P., Cardoso, A., Carvalho, P., Dourado, A.: Adaptive neural output regulation control of a solar power plant. Control Engrg. Practice 18 (2010), 10, 1183-1196. | DOI
[15] Isidori, A.: Nonlinear Control Systems. Third edition. Springer, London 1995. | DOI | MR
[16] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. {IEEE} Trans. Automat. Control 35 (1990) 2, 131-140. | DOI | MR | Zbl
[17] Jensen, T. N., Wisniewski, R., DePersis, C., Kallesøe, C. S.: Output regulation of large-scale hydraulic networks with minimal steady state power consumption. Control Engrg. Practice 22 (2014), 103-113. | DOI
[18] Khalil, H.: Nonlinear Systems. Third edition. Prentice Hall, New Jersey 2002.
[19] Kim, W., Kim, H., Chung, C. C., Tomizuka, M.: Adaptive output regulation for the rejection of a periodic disturbance with an unknown frequency. IEEE Trans. Control Systems Technol. 19 (2011), 5, 1296-1304. | DOI
[20] Lewis, F. L., Dawson, D. M., Abdallah, C. T.: Robot Manipulator Control: Theory and Practice. CRC Press, 2003. | DOI
[21] Mahony, R., Mareels, I., Bastin, G., Campion, G.: Static-state feedback laws for output regulation of non-linear systems. Control Engingrg. Practice 4 (1966), 7, 1009-1014. | DOI
[22] Marconi, L., Praly, L.: Uniform practical nonlinear output regulation. IEEE Trans. Automat. Control 53 (2008), 5, 1184-1202. | DOI | MR
[23] Meda, J. A., Castillo, B.: Synchronization of chaotic systems from a fuzzy regulation approach. Fuzzy Sets Systems 160 (2009), 19, 2860-2875. | DOI | MR
[24] Meda, J. A., Gomez, J. C., Castillo, B.: Exact output regulation for nonlinear systems described by {Takagi}-{Sugeno} fuzzy models. {IEEE} Trans. Fuzzy Systems 20 (2012), 2, 235-247. | DOI
[25] Nejjari, F., Rotondo, D., Puig, V., Innocenti, M.: LPV modelling and control of a Twin Rotor MIMO system. In: 19th Mediterranean Conference on Control and Automation (MED), IEEE 2011, pp. 1082-1087. | DOI
[26] Pandey, S. K., Laxmi, V.: Optimal control of twin rotor MIMO system using LQR technique. Comput. Intell. Data Mining 31 (2015), 11-21. | DOI
[27] Pavlov, A., Janssen, B., Wouw, N. Van de, Nijmeijer, H.: Experimental Output Regulation for a Nonlinear Benchmark System. IEEE Trans. Control Systems Technol. 15 (2007), 4, 786-793. | DOI | MR
[28] Pratap, B., Purwar, S.: Neural network observer for twin rotor mimo system: an lmi based approach. In: The 2010 International Conference on Modelling, Identification and Control (ICMIC), IEEE 2010, pp. 539-544.
[29] Robles, R., Bernal, M.: Comments on Exact output regulation for nonlinear systems described by Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Systems 23 (2015), 1, 230-233. | DOI
[30] Tanaka, K., Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001. | DOI
[31] Tao, C.-W., Taur, J.-S., Chang, Y.-H., Chang, C.-W.: A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-input-multi-output system. IEEE Trans. Fuzzy Systems 18 (2010), 5, 893-905. | DOI
[32] Tapia, A., Márquez, R., Bernal, M., Cortez, J.: Sliding subspace design based on linear matrix inequalities. Kybernetika 50 (2014), 3, 633-641. | MR
[33] Tarn, T. J., Sanposh, P., Cheng, D., Zhang, M.: Output Regulation for Nonlinear Systems: Some Recent Theoretical and Experimental Results. IEEE Trans. Control Systems Technol. 13 (2005), 605-610. | DOI
[34] Umemura, Y., Sakamoto, N.: Optimal servo design for lock-up slip control for torque converter nonlinear output regulation approach. IEEE Trans. Control Systems Technol. 23 (2015), 4, 1587-1593. | DOI
[35] Yoon, S. Y., Di, L., Lin, Z.: Unbalance compensation for AMB systems with input delay: An output regulation approach. Control Engrg. Practice 46 (2016), 166-175. | DOI | MR
Cité par Sources :