A practical solution to implement nonlinear output regulation via dynamic mappings
Kybernetika, Tome 55 (2019) no. 2, pp. 385-401
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper presents a novel error-feedback practical solution for real-time implementation of nonlinear output regulation. Sufficient and necessary conditions for both state- and error-feedback output regulation have been established for linear and nonlinear systems several decades ago. In their most general form, these solutions require solving a set of nonlinear partial differential equations, which may be hard or even impossible to solve analytically. In recent years, a methodology for dynamic calculation of the mappings required for state-feedback regulation has been put forward; following the latter, an error-feedback extension is hereby provided which, when combined with design conditions in the form of linear matrix inequalities, becomes suitable for real-time setups. Real-time results are presented for a nonlinear twin rotor MIMO system. Issues concerning the implementation as well as the solutions adopted, are discussed.
This paper presents a novel error-feedback practical solution for real-time implementation of nonlinear output regulation. Sufficient and necessary conditions for both state- and error-feedback output regulation have been established for linear and nonlinear systems several decades ago. In their most general form, these solutions require solving a set of nonlinear partial differential equations, which may be hard or even impossible to solve analytically. In recent years, a methodology for dynamic calculation of the mappings required for state-feedback regulation has been put forward; following the latter, an error-feedback extension is hereby provided which, when combined with design conditions in the form of linear matrix inequalities, becomes suitable for real-time setups. Real-time results are presented for a nonlinear twin rotor MIMO system. Issues concerning the implementation as well as the solutions adopted, are discussed.
DOI : 10.14736/kyb-2019-2-0385
Classification : 93C10, 93C95, 93D05
Keywords: nonlinear output regulation; linear matrix inequality; twin rotor; real-time
@article{10_14736_kyb_2019_2_0385,
     author = {Armenta, Carlos and \'Alvarez, Jorge and M\'arquez, Raymundo and Bernal, Miguel},
     title = {A practical solution to implement nonlinear output regulation via dynamic mappings},
     journal = {Kybernetika},
     pages = {385--401},
     year = {2019},
     volume = {55},
     number = {2},
     doi = {10.14736/kyb-2019-2-0385},
     mrnumber = {4014593},
     zbl = {07144944},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0385/}
}
TY  - JOUR
AU  - Armenta, Carlos
AU  - Álvarez, Jorge
AU  - Márquez, Raymundo
AU  - Bernal, Miguel
TI  - A practical solution to implement nonlinear output regulation via dynamic mappings
JO  - Kybernetika
PY  - 2019
SP  - 385
EP  - 401
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0385/
DO  - 10.14736/kyb-2019-2-0385
LA  - en
ID  - 10_14736_kyb_2019_2_0385
ER  - 
%0 Journal Article
%A Armenta, Carlos
%A Álvarez, Jorge
%A Márquez, Raymundo
%A Bernal, Miguel
%T A practical solution to implement nonlinear output regulation via dynamic mappings
%J Kybernetika
%D 2019
%P 385-401
%V 55
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0385/
%R 10.14736/kyb-2019-2-0385
%G en
%F 10_14736_kyb_2019_2_0385
Armenta, Carlos; Álvarez, Jorge; Márquez, Raymundo; Bernal, Miguel. A practical solution to implement nonlinear output regulation via dynamic mappings. Kybernetika, Tome 55 (2019) no. 2, pp. 385-401. doi: 10.14736/kyb-2019-2-0385

[1] Ahmed, Q., Bhatti, A. I., Iqbal, S.: Robust decoupling control design for twin rotor system using Hadamard weights. In: Control Applications, (CCA) and Intelligent Control, (ISIC), 2009 IEEE, pp. 1009-1014. | DOI

[2] Bernal, M., Marquez, R., Estrada, V., Castillo, B.: An element-wise linear matrix inequality approach for output regulation problems. In: World Automation Congress (WAC) 2012, Puerto Vallarta 2012, pp. 1-6.

[3] Bernal, M., Marquez, R., Estrada-Manzo, V., Castillo-Toledo, B.: Nonlinear output regulation via Takagi-Sugeno fuzzy mappings: A full-information LMI approach. In: IEEE International Conference on Fuzzy Systems 2012, pp. 1-7. | DOI

[4] {Boyd}, S., Ghaoui, L. E., Feron, E., Belakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Studies In Applied Mathematics 15, Philadelphia 1994. | DOI | MR

[5] Byrnes, C. I., Isidori, A.: Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation. IEEE Trans. Automat. Control 48 (2003), 10, 1712-1723. | DOI | MR

[6] Byrnes, C. I., Isidori, A.: Nonlinear internal models for output regulation. IEEE Trans. Automat. Control 49 (2004), 12, 2244-2247. | DOI | MR

[7] Byrnes, C. I., Priscoli, F. D., Isidori, A.: Output regulation of uncertain nonlinear systems. Springer Science and Business Media, 2012. | DOI | MR

[8] Davison, E.: The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automat. Control 21 (1976), 1, 25-34. | DOI | MR

[9] Duan, G. R., Yu, H. H.: LMIs in Control Systems: Analysis, Design and Applications. CRC Press, 2013. | MR

[10] Ltd, Feedback instruments, Manual, East Sussex. TRMS 33-949S User: Twin Rotor MIMO System Control Experiments, 1998.

[11] Francis, B. A.: The linear multivariable regulator problem. SIAM J. Control Optim. 15 (1077), 486-505. | DOI | MR

[12] Francis, B. A., Wonham, W. M.: The internal model principle for linear multivariable regulators. J. Appl. Math. Optim. 2 (1975), 170-194. | DOI | MR

[13] Glauser, M., Lin, Z., Allaire, P. E.: Modeling and control of a partial body weight support system: an output regulation approach. IEEE Trans. Control Systems Technol. 18 (2010), 2, 480-490. | DOI

[14] Henriques, J., Gil, P., Cardoso, A., Carvalho, P., Dourado, A.: Adaptive neural output regulation control of a solar power plant. Control Engrg. Practice 18 (2010), 10, 1183-1196. | DOI

[15] Isidori, A.: Nonlinear Control Systems. Third edition. Springer, London 1995. | DOI | MR

[16] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. {IEEE} Trans. Automat. Control 35 (1990) 2, 131-140. | DOI | MR | Zbl

[17] Jensen, T. N., Wisniewski, R., DePersis, C., Kallesøe, C. S.: Output regulation of large-scale hydraulic networks with minimal steady state power consumption. Control Engrg. Practice 22 (2014), 103-113. | DOI

[18] Khalil, H.: Nonlinear Systems. Third edition. Prentice Hall, New Jersey 2002.

[19] Kim, W., Kim, H., Chung, C. C., Tomizuka, M.: Adaptive output regulation for the rejection of a periodic disturbance with an unknown frequency. IEEE Trans. Control Systems Technol. 19 (2011), 5, 1296-1304. | DOI

[20] Lewis, F. L., Dawson, D. M., Abdallah, C. T.: Robot Manipulator Control: Theory and Practice. CRC Press, 2003. | DOI

[21] Mahony, R., Mareels, I., Bastin, G., Campion, G.: Static-state feedback laws for output regulation of non-linear systems. Control Engingrg. Practice 4 (1966), 7, 1009-1014. | DOI

[22] Marconi, L., Praly, L.: Uniform practical nonlinear output regulation. IEEE Trans. Automat. Control 53 (2008), 5, 1184-1202. | DOI | MR

[23] Meda, J. A., Castillo, B.: Synchronization of chaotic systems from a fuzzy regulation approach. Fuzzy Sets Systems 160 (2009), 19, 2860-2875. | DOI | MR

[24] Meda, J. A., Gomez, J. C., Castillo, B.: Exact output regulation for nonlinear systems described by {Takagi}-{Sugeno} fuzzy models. {IEEE} Trans. Fuzzy Systems 20 (2012), 2, 235-247. | DOI

[25] Nejjari, F., Rotondo, D., Puig, V., Innocenti, M.: LPV modelling and control of a Twin Rotor MIMO system. In: 19th Mediterranean Conference on Control and Automation (MED), IEEE 2011, pp. 1082-1087. | DOI

[26] Pandey, S. K., Laxmi, V.: Optimal control of twin rotor MIMO system using LQR technique. Comput. Intell. Data Mining 31 (2015), 11-21. | DOI

[27] Pavlov, A., Janssen, B., Wouw, N. Van de, Nijmeijer, H.: Experimental Output Regulation for a Nonlinear Benchmark System. IEEE Trans. Control Systems Technol. 15 (2007), 4, 786-793. | DOI | MR

[28] Pratap, B., Purwar, S.: Neural network observer for twin rotor mimo system: an lmi based approach. In: The 2010 International Conference on Modelling, Identification and Control (ICMIC), IEEE 2010, pp. 539-544.

[29] Robles, R., Bernal, M.: Comments on Exact output regulation for nonlinear systems described by Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Systems 23 (2015), 1, 230-233. | DOI

[30] Tanaka, K., Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001. | DOI

[31] Tao, C.-W., Taur, J.-S., Chang, Y.-H., Chang, C.-W.: A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-input-multi-output system. IEEE Trans. Fuzzy Systems 18 (2010), 5, 893-905. | DOI

[32] Tapia, A., Márquez, R., Bernal, M., Cortez, J.: Sliding subspace design based on linear matrix inequalities. Kybernetika 50 (2014), 3, 633-641. | MR

[33] Tarn, T. J., Sanposh, P., Cheng, D., Zhang, M.: Output Regulation for Nonlinear Systems: Some Recent Theoretical and Experimental Results. IEEE Trans. Control Systems Technol. 13 (2005), 605-610. | DOI

[34] Umemura, Y., Sakamoto, N.: Optimal servo design for lock-up slip control for torque converter nonlinear output regulation approach. IEEE Trans. Control Systems Technol. 23 (2015), 4, 1587-1593. | DOI

[35] Yoon, S. Y., Di, L., Lin, Z.: Unbalance compensation for AMB systems with input delay: An output regulation approach. Control Engrg. Practice 46 (2016), 166-175. | DOI | MR

Cité par Sources :