On stability and the Łojasiewicz exponent at infinity of coercive polynomials
Kybernetika, Tome 55 (2019) no. 2, pp. 359-366.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article we analyze the relationship between the growth and stability properties of coercive polynomials. For coercive polynomials we introduce the degree of stable coercivity which measures how stable the coercivity is with respect to small perturbations by other polynomials. We link the degree of stable coercivity to the Łojasiewicz exponent at infinity and we show an explicit relation between them.
DOI : 10.14736/kyb-2019-2-0359
Classification : 26C05
Keywords: coercivity; stability of coercivity; Lojasiewicz exponent at infinity
@article{10_14736_kyb_2019_2_0359,
     author = {Bajbar, Tom\'a\v{s} and Behrends, S\"onke},
     title = {On stability and the {{\L}ojasiewicz} exponent at infinity of coercive polynomials},
     journal = {Kybernetika},
     pages = {359--366},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2019},
     doi = {10.14736/kyb-2019-2-0359},
     mrnumber = {4014591},
     zbl = {07144942},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0359/}
}
TY  - JOUR
AU  - Bajbar, Tomáš
AU  - Behrends, Sönke
TI  - On stability and the Łojasiewicz exponent at infinity of coercive polynomials
JO  - Kybernetika
PY  - 2019
SP  - 359
EP  - 366
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0359/
DO  - 10.14736/kyb-2019-2-0359
LA  - en
ID  - 10_14736_kyb_2019_2_0359
ER  - 
%0 Journal Article
%A Bajbar, Tomáš
%A Behrends, Sönke
%T On stability and the Łojasiewicz exponent at infinity of coercive polynomials
%J Kybernetika
%D 2019
%P 359-366
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0359/
%R 10.14736/kyb-2019-2-0359
%G en
%F 10_14736_kyb_2019_2_0359
Bajbar, Tomáš; Behrends, Sönke. On stability and the Łojasiewicz exponent at infinity of coercive polynomials. Kybernetika, Tome 55 (2019) no. 2, pp. 359-366. doi : 10.14736/kyb-2019-2-0359. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0359/

Cité par Sources :