Keywords: coercivity; stability of coercivity; Lojasiewicz exponent at infinity
@article{10_14736_kyb_2019_2_0359,
author = {Bajbar, Tom\'a\v{s} and Behrends, S\"onke},
title = {On stability and the {{\L}ojasiewicz} exponent at infinity of coercive polynomials},
journal = {Kybernetika},
pages = {359--366},
year = {2019},
volume = {55},
number = {2},
doi = {10.14736/kyb-2019-2-0359},
mrnumber = {4014591},
zbl = {07144942},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0359/}
}
TY - JOUR AU - Bajbar, Tomáš AU - Behrends, Sönke TI - On stability and the Łojasiewicz exponent at infinity of coercive polynomials JO - Kybernetika PY - 2019 SP - 359 EP - 366 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0359/ DO - 10.14736/kyb-2019-2-0359 LA - en ID - 10_14736_kyb_2019_2_0359 ER -
%0 Journal Article %A Bajbar, Tomáš %A Behrends, Sönke %T On stability and the Łojasiewicz exponent at infinity of coercive polynomials %J Kybernetika %D 2019 %P 359-366 %V 55 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0359/ %R 10.14736/kyb-2019-2-0359 %G en %F 10_14736_kyb_2019_2_0359
Bajbar, Tomáš; Behrends, Sönke. On stability and the Łojasiewicz exponent at infinity of coercive polynomials. Kybernetika, Tome 55 (2019) no. 2, pp. 359-366. doi: 10.14736/kyb-2019-2-0359
[1] Bajbar, T., Stein, O.: Coercive polynomials and their Newton polytopes. SIAM J. Optim. 25 (2015), 1542-1570. | DOI | MR
[2] Bajbar, T., Stein, O.: Coercive polynomials: stability, order of growth, and Newton polytopes. Optimization 68 (2018), 1, 99..124. | DOI | MR
[3] Bajbar, T., Stein, O.: On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers. Math. Zeitschrift 288 (2018), 915-933. | DOI | MR
[4] Behrends, S.: Geometric and Algebraic Approaches to Mixed-Integer Polynomial Optimization Using Sos Programming. PhD Thesis, Universität Göttingen 2017.
[5] Behrends, S., Hübner, R., Schöbel, A.: Norm bounds and underestimators for unconstrained polynomial integer minimization. Math. Methods Oper. Res. 87 (2018), 73-107. | DOI | MR
[6] Bivià-Ausina, C.: Injectivity of real polynomial maps and Łojasiewicz exponents at infinity. Math. Zeitschrift 257 (2007), 745-767. | DOI | MR
[7] Chadzyński, J., Krasiński, T.: A set on which the Łojasiewicz exponent at infinity is attained. Ann. Polon. Math. 67 (1997), 2, 191-19. | DOI | MR
[8] Chen, Y., Dias, L. R. G., Takeuchi, K., Tibar, M.: Invertible polynomial mappings via Newton non-degeneracy. Ann. Inst. Fourier 64 (2014), 1807-1822. | DOI | MR
[9] Din, M. S. El: Computing the global optimum of a multivariate polynomial over the reals. In: Proc. Twenty-first international symposium on Symbolic and algebraic computation 2008, pp. 71-78. | DOI | MR
[10] Gorin, E. A.: Asymptotic properties of polynomials and algebraic functions of several variables. Russian Math. Surveys 16 (1961), 93-119. | DOI | MR
[11] Greuet, A., Din, M. Safey El: Deciding reachability of the infimum of a multivariate polynomial. In: Proc. 36th international symposium on Symbolic and algebraic computation 2011, pp. 131-138. | DOI | MR
[12] Greuet, A., Din, M. Safey El: Probabilistic algorithm for polynomial optimization over a real algebraic set. SIAM J. Optim. 24 (2014), 1313-1343. | DOI | MR
[13] Krasiński, T.: On the Łojasiewicz exponent at infinity of polynomial mappings. Acta Math. Vietnam 32 (2007), 189-203. | MR
[14] Marshall, M.: Optimization of polynomial functions. Canadian Math. Bull. 46 (2003), 575-587. | DOI | MR
[15] Marshall, M.: Positive polynomials and sums of squares. Amer. Math. Soc. (2008), 3-19. | MR
[16] Némethi, A., Zaharia, A.: Milnor fibration at infinity. Indagationes Math. 3 (1992), 323-335. | DOI | MR
[17] Nie, J., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over the gradient ideal. Math. Programm. 106 (2006), 587-606. | DOI | MR
[18] Schweighofer, M.: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17 (2006), 920-942. | DOI | MR
[19] Vui, H. H., Pham, T. S.: Minimizing polynomial functions. Acta Math. Vietnam. 32 (2007), 71-82. | MR
[20] Vui, H. H., Pham, T. S.: Representations of positive polynomials and optimization on noncompact semialgebraic sets. SIAM J. Optim. 20 (2010), 3082-3103. | DOI | MR
Cité par Sources :