Keywords: fractional optimal control; cooperative systems;; Schrodinger operator; maximum principle; existence of solution; boundary control; optimality conditions; fractional Caputo derivatives; Riemann–Liouville derivatives
@article{10_14736_kyb_2019_2_0337,
author = {Bahaa, G. M.},
title = {Optimal control problem and maximum principle for fractional order cooperative systems},
journal = {Kybernetika},
pages = {337--358},
year = {2019},
volume = {55},
number = {2},
doi = {10.14736/kyb-2019-2-0337},
mrnumber = {4014590},
zbl = {07144941},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0337/}
}
TY - JOUR AU - Bahaa, G. M. TI - Optimal control problem and maximum principle for fractional order cooperative systems JO - Kybernetika PY - 2019 SP - 337 EP - 358 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0337/ DO - 10.14736/kyb-2019-2-0337 LA - en ID - 10_14736_kyb_2019_2_0337 ER -
Bahaa, G. M. Optimal control problem and maximum principle for fractional order cooperative systems. Kybernetika, Tome 55 (2019) no. 2, pp. 337-358. doi: 10.14736/kyb-2019-2-0337
[1] Agrawal, O. P.: Formulation of Euler-Lagrange equations for fractional variational problems. Math. Anal. Appl. 272 (2002), 368-379. | DOI | MR
[2] Agrawal, O P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynamics 38 (2004), 323-337. | DOI | MR
[3] Agrawal, O. P., Baleanu, D. A.: Hamiltonian formulation and direct numerical scheme for fractional optimal control problems. J. Vibration Control 13 (2007), 9-10, 1269-1281. | DOI | MR
[4] Al-Refai, M., Luchko, Yu.: Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 17 (2014), 2, 483-498. | DOI | MR
[5] Al-Refai, M., Luchko, Yu.: Maximum principle for the multi-term time fractional diffusion equations with the Riemann-Liouville fractional derivatives. Appl. Math. Comput. 257 (2015), 40-51. | DOI | MR
[6] Al-Refai, M., Luchko, Yu.: Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications. Analysis 36 (2016), 123-133. | DOI | MR
[7] Bahaa, G. M.: Fractional optimal control problem for variational inequalities with control constraints. IMA J. Math. Control Inform. 35 (2018), 1, 107-122. | DOI | MR
[8] Bahaa, G. M.: Fractional optimal control problem for differential system with control constraints. Filomat J. 30 (2016), 8, 2177-2189. | MR
[9] Bahaa, G. M.: Fractional optimal control problem for differential system with control constraints with delay argument. Advances Difference Equations 2017 (2017), 69, 1-19. | DOI | MR
[10] Bahaa, G. M.: Optimal control for cooperative parabolic systems governed by Schrödinger operator with control constraints. IMA J. Math. Control Inform. 24 (2007), 1-12. | DOI | MR
[11] Bahaa, G. M., Hamiaz, A.: Optimality conditions for fractional differential inclusions with non-singular Mittag-Leffler Kernel. Adv. Difference Equations (2018), 257. | MR
[12] Baleanu, D. A., Agrawal, O. P.: Fractional Hamilton formalism within Caputo's derivative. Czechosl. J. Phys. 56 (2006), 10/11 1087-1092. | DOI | MR
[13] Bastos, N. R. O., Mozyrska, D., Torres, D. F. M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11 (2011), J11, 1-9. | MR
[14] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Cont. Dyn. Syst. 29 (2011), 2, 417-437. | DOI | MR | Zbl
[15] Eidelman, S. D., Kochubei, A. N.: Cauchy problem for fractional diffusion equations. J. Diff. Equat. 199(2004), 211-255. | DOI | MR
[16] El-Sayed, A. M. A.: Fractional differential equations. Kyungpook Math. J. 28 (1988), 2, 18-22. | MR
[17] Fleckinger, J.: Estimates of the number of eigenvalues for an operator of Schrödinger type. Proc. Royal Soc. Edinburg 89A (1981), 355-361. | DOI | MR
[18] Fleckinger, J.: Method of sub-super solutions for some elliptic systems defined on $\Omega$. Preprint UMR MIP, Universite Toulouse 3 (1994).
[19] Fleckinger, J., Hernándes, J., Thélin, F. de: On maximum principle and existence of positive solutions for cooperative elliptic systems. Diff. Int. Eqns. 8 (1995), 69-85. | MR
[20] Fleckinger, J., Serag, H.: Semilinear cooperative elliptic systems on $R^{n}$. Rend. di Mat. 15 (1995), VII, 89-108. | MR
[21] Gastao, S. F. Frederico, Torres, D. F. M.: Fractional optimal control in the sense of Caputo and the fractional Noether's theorem. Int. Math. Forum 3 (2008), 10, 479-493. | MR
[22] Kochubei, A. N.: Fractional order diffusion. Diff. Equations 26 (1990), 485-492. | MR
[23] Kochubei, A. N.: General fractional calculus, evolution equations, and renewal processes. Integr. Equat. Oper. Theory 71 (2011), 583-600. | DOI | MR
[24] Kotarski, W., El-Saify, H. A., Bahaa, G. M.: Optimal control of parabolic equation with an infinite number of variables for non-standard functional and time delay. IMA J. Math. Control Inform. 19 (2002), 4, 461-476. | DOI | MR
[25] Lions, J. L.: Optimal Control Of Systems Governed By Partial Differential Equations. Springer-Verlag, Band 170 (1971). | MR
[26] Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problem and Applications. Springer-Verlag, New York 1972. | DOI | MR
[27] Liu, Y., Rundell, W., Yamamoto, M.: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. Anal. 19 (2016), 4, 888-906. | DOI | MR
[28] Liu, Z., Zeng, Sh., Bai, Y.: Maximum principles for multi-term spacetime variable order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19 (2016), 1, 188-211. | DOI | MR
[29] Luchko, Yu.: Maximum principle for the generalized time fractional diffusion equation. J. Math. Anal. Appl. 351 (2009), 218-223. | DOI | MR
[30] Luchko, Yu.: Boundary value problems for the generalized time fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12 (2009), 409-422. | MR
[31] Luchko, Yu.: Some uniqueness and existence results for the initial boundary value problems for the generalized time fractional diffusion equation. Comput. Math. Appl. 59 (2010), 1766-1772. | DOI | MR
[32] Luchko, Yu.: Initial boundary value problems for the generalized multiterm time fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538-548. | DOI | MR
[33] Luchko, Yu., Yamamoto, M.: General time fractional diffusion equation: Some uniqueness and existence results for the initial boundary value problems. Fract. Calc. Appl. Anal. 19 (2016), 3, 676-695. | DOI | MR
[34] Matychyna, I., Onyshchenkob, V.: On time-optimal control of fractional-order systems. J. Comput. Appl. Math. 339 (2018), 245-257. | DOI | MR
[35] Mophou, G. M.: Optimal control of fractional diffusion equation. Comput. Math. Appl. 61 (2011), 68-78. | DOI | MR
[36] Mophou, G. M.: Optimal control of fractional diffusion equation with state constraints. Comput. Math. Appl. 62 (2011), 1413-1426. | DOI | MR
[37] Oldham, K. B., Spanier, J.: The Fractional Calculus. Academic Press, New York 1974. | MR | Zbl
[38] Protter, M., Weinberger, H.: Maximum Principles in Differential Equations. Prentice Hall, Englewood Clifs, 1967. | DOI | MR
[39] Ye, H., Liu, F., Anh, V., Turner, I.: Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations. Appl. Math. Comput. 227 (2014), 531-540. | DOI | MR
Cité par Sources :