Optimal control problem and maximum principle for fractional order cooperative systems
Kybernetika, Tome 55 (2019) no. 2, pp. 337-358.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, by using the classical control theory, the optimal control problem for fractional order cooperative system governed by Schrödinger operator is considered. The fractional time derivative is considered in a Riemann-Liouville and Caputo senses. The maximum principle for this system is discussed. We first study by using the Lax-Milgram Theorem, the existence and the uniqueness of the solution of the fractional differential system in a Hilbert space. Then we show that the considered optimal control problem has a unique solution. The performance index of a (FOCP) is considered as a function of both state and control variables, and the dynamic constraints are expressed by a Partial Fractional Differential Equation (PFDE). Finally, we impose some constraints on the boundary control. Interpreting the Euler-Lagrange first order optimality condition with an adjoint problem defined by means of right fractional Caputo derivative, we obtain an optimality system for the optimal control. Some examples are analyzed in details.
DOI : 10.14736/kyb-2019-2-0337
Classification : 26A33, 35R11, 49J15, 49J20, 49K20, 93C20
Keywords: fractional optimal control; cooperative systems;; Schrodinger operator; maximum principle; existence of solution; boundary control; optimality conditions; fractional Caputo derivatives; Riemann–Liouville derivatives
@article{10_14736_kyb_2019_2_0337,
     author = {Bahaa, G. M.},
     title = {Optimal control problem and maximum principle for fractional order cooperative systems},
     journal = {Kybernetika},
     pages = {337--358},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2019},
     doi = {10.14736/kyb-2019-2-0337},
     mrnumber = {4014590},
     zbl = {07144941},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0337/}
}
TY  - JOUR
AU  - Bahaa, G. M.
TI  - Optimal control problem and maximum principle for fractional order cooperative systems
JO  - Kybernetika
PY  - 2019
SP  - 337
EP  - 358
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0337/
DO  - 10.14736/kyb-2019-2-0337
LA  - en
ID  - 10_14736_kyb_2019_2_0337
ER  - 
%0 Journal Article
%A Bahaa, G. M.
%T Optimal control problem and maximum principle for fractional order cooperative systems
%J Kybernetika
%D 2019
%P 337-358
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0337/
%R 10.14736/kyb-2019-2-0337
%G en
%F 10_14736_kyb_2019_2_0337
Bahaa, G. M. Optimal control problem and maximum principle for fractional order cooperative systems. Kybernetika, Tome 55 (2019) no. 2, pp. 337-358. doi : 10.14736/kyb-2019-2-0337. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0337/

Cité par Sources :