Keywords: bounded lattice; t-norm; t-conorm; ordinal sum
@article{10_14736_kyb_2019_2_0273,
author = {\c{C}ayl{\i}, G\"ul Deniz},
title = {Some methods to obtain t-norms and t-conorms on bounded lattices},
journal = {Kybernetika},
pages = {273--294},
year = {2019},
volume = {55},
number = {2},
doi = {10.14736/kyb-2019-2-0273},
mrnumber = {4014587},
zbl = {07144938},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0273/}
}
TY - JOUR AU - Çaylı, Gül Deniz TI - Some methods to obtain t-norms and t-conorms on bounded lattices JO - Kybernetika PY - 2019 SP - 273 EP - 294 VL - 55 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0273/ DO - 10.14736/kyb-2019-2-0273 LA - en ID - 10_14736_kyb_2019_2_0273 ER -
Çaylı, Gül Deniz. Some methods to obtain t-norms and t-conorms on bounded lattices. Kybernetika, Tome 55 (2019) no. 2, pp. 273-294. doi: 10.14736/kyb-2019-2-0273
[1] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 1, 15-27. | DOI | MR
[2] Aşıcı, E.: On the properties of the F-partial order and the equivalence of nullnorms. Fuzzy Sets and Systems 346 (2018), 72-84. | DOI | MR
[3] Aşıcı, E.: An extension of the ordering based on nullnorms. Kybernetika 55 (2019), 2, 217-232. | DOI
[4] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publ., Providence 1967. | DOI | MR | Zbl
[5] Butnariu, D., Klement, E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer Academic Publishers, Dordrecht 1993. | DOI | MR
[6] Clifford, A.: Naturally totally ordered commutative semigroups. Am. J. Math. 76 (1954), 631-646. | DOI | MR
[7] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inform. Sci. 367-368 (2016), 221-231. | DOI | MR
[8] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 3, 394-417. | DOI | MR
[9] Çaylı, G. D.: Characterizing ordinal sum for t-norms and t-conorms on bounded lattices. In: Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing (J. Kacprzyk, E. Szmidt, S. Zadrozny, K. Atanassov, M. Krawczak, eds.), vol. 641 Springer, Cham 2018, pp. 443-454. | DOI
[10] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets and Systems 332 (2018), 129-143. | DOI | MR
[11] Çaylı, G. D.: On the structure of uninorms on bounded lattices. Fuzzy Sets and Systems 357 (2019), 2-26. | DOI | MR
[12] Deschrijver, G., Kerre, E. E.: Uninorms in $L^{\ast }$-fuzzy set theory. Fuzzy Sets and Systems 148 (2004), 243-262. | DOI | MR
[13] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators. In: EUFIT 96, Aachen 1996.
[14] Drossos, C. A.: Generalized t-norm structures. Fuzzy Sets Systems 104 (1999), 53-59. | DOI | MR
[15] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets and Systems 161 (2010), 149-157. | DOI | MR | Zbl
[16] Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124 (2001), 271-288. | DOI | MR
[17] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817. | DOI
[18] Goguen, J. A.: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174. | DOI | MR
[19] Goguen, J. A.: The fuzzy Tychonoff theorem. J. Math. Anal. Appl. 43 (1973), 734-742. | DOI | MR
[20] Grabisch, M., Nguyen, H. T., Walker, E. A.: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordrecht 1995. | MR
[21] Höhle, U.: Probabilistische Topologien. Manuscr. Math. 26 (1978), 223-245. | DOI | MR
[22] Höhle, U.: Commutative, residuated SOH-monoids, Non-classical logics and their applications to fuzzy subsets. In: A handbook of the mathematical foundations of fuzzy set theory, theory and decision library series B: mathematical and statistical methods (K. Höhle, ed.), vol. 32. The Netherlands Kluwer, Dordrecht 1995. | MR
[23] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Acad. Publ., Dordrecht 2000. | DOI | MR | Zbl
[24] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets and Systems 202 (2012), 75-88. | DOI | MR
[25] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets and Systems 157 (2006), 10, 1403-1416. | DOI | MR | Zbl
[26] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York 1983. | MR | Zbl
Cité par Sources :