Dieudonné-type theorems for lattice group-valued $k$-triangular set functions
Kybernetika, Tome 55 (2019) no. 2, pp. 233-251
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for $k$-triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.
Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for $k$-triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.
DOI : 10.14736/kyb-2019-2-0233
Classification : 28A12, 28A33, 28B10, 28B15, 40A35, 46G10
Keywords: lattice group; $(D)$-convergence; $k$-triangular set function; $(s)$-bounded set function; Fremlin lemma; limit theorem; Brooks–Jewett theorem; Dieudonné theorem; Nikodým boundedness theorem
@article{10_14736_kyb_2019_2_0233,
     author = {Boccuto, Antonio and Dimitriou, Xenofon},
     title = {Dieudonn\'e-type theorems for lattice group-valued $k$-triangular set functions},
     journal = {Kybernetika},
     pages = {233--251},
     year = {2019},
     volume = {55},
     number = {2},
     doi = {10.14736/kyb-2019-2-0233},
     mrnumber = {4014585},
     zbl = {07144936},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0233/}
}
TY  - JOUR
AU  - Boccuto, Antonio
AU  - Dimitriou, Xenofon
TI  - Dieudonné-type theorems for lattice group-valued $k$-triangular set functions
JO  - Kybernetika
PY  - 2019
SP  - 233
EP  - 251
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0233/
DO  - 10.14736/kyb-2019-2-0233
LA  - en
ID  - 10_14736_kyb_2019_2_0233
ER  - 
%0 Journal Article
%A Boccuto, Antonio
%A Dimitriou, Xenofon
%T Dieudonné-type theorems for lattice group-valued $k$-triangular set functions
%J Kybernetika
%D 2019
%P 233-251
%V 55
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0233/
%R 10.14736/kyb-2019-2-0233
%G en
%F 10_14736_kyb_2019_2_0233
Boccuto, Antonio; Dimitriou, Xenofon. Dieudonné-type theorems for lattice group-valued $k$-triangular set functions. Kybernetika, Tome 55 (2019) no. 2, pp. 233-251. doi: 10.14736/kyb-2019-2-0233

[1] Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg 1999. | MR

[2] Barbieri, G.: On Dieudonné's boundedness theorem. Boll. Un. Mat. Ital. II 9 (2009), 343-348. | MR

[3] Barbieri, G.: On the Dieudonné theorem. Sci. Math. Japon. 44 (2009), 403-408. | DOI | MR

[4] Barbieri, G., Boccuto, A.: On extensions of $k$-subadditive lattice group-valued capacities. Italian J. Pure Appl. Math. 37 (2017), 387-408. | MR

[5] Barbieri, G., Boccuto, A.: On some properties of $k$-subadditive lattice group-valued capacities. Math. Slovaca 67 (2017), 1387-1408. | DOI | MR

[6] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mt. Math. Publ. 8 (1996), 29-42. | MR

[7] Boccuto, A.: Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mt. Math. Publ. 10 (1997), 33-54. | MR

[8] Boccuto, A.: Egorov property and weak $\sigma$-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61-66.

[9] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and convergece results for measures with values in complete $(\ell)$-groups. J. Math. Anal. Appl. 265 (2002), 170-194. | DOI | MR

[10] Boccuto, A., Candeloro, D.: Dieudonné-type theorems for set functions with values in $(\ell)$-groups. Real Anal. Exchange 27 (2002), 473-484. | DOI | MR

[11] Boccuto, A., Candeloro, D.: Uniform boundedness theorems in Riesz spaces. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382. | MR

[12] Boccuto, A., Candeloro, D.: Some new results about Brooks-Jewett and Dieudonné-type theorems in $(\ell)$-groups. Kybernetika 46 (2010), 1049-1060. | MR

[13] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and regularity for $(\ell)$-group-valued measures. Cent. Eur. J. Math. 9 (2) (2011), 433-440. | DOI | MR

[14] Boccuto, A., Dimitriou, X.: Ideal limit theorems and their equivalence in $(\ell)$-group setting. J. Math. Research 5 (2013), 43-60. | DOI

[15] Boccuto, A., Dimitriou, X.: Limit theorems for topological group-valued maesures. Acta Math. (Nitra) 16 (2013), 37-43. | MR

[16] Boccuto, A., Dimitriou, X.: Convergence Theorems for Lattice Group-Valued Measures. Bentham Science Publ., Sharjah 2015. | DOI | MR

[17] Boccuto, A., Dimitriou, X.: Limit theorems for $k$-subadditive lattice group-valued capacities in the filter convergence setting. Tatra Mt. Math. Publ. 65 (2016), 1-21. | DOI | MR

[18] Boccuto, A., Dimitriou, X.: Matrix theorems and interchange for lattice group-valued series in the filter convergence setting. Bull. Hellenic Math. Soc. 59 (2016), 39-55. | MR

[19] Boccuto, A., Dimitriou, X.: Limit theorems for lattice group-valued $k$-triangular set functions. In: Proc. 33rd PanHellenic Conference on Mathematical Education, Chania 2016, pp. 1-10. | MR

[20] Boccuto, A., Dimitriou, X.: Schur-type theorems for $k$-triangular lattice group-valued set functions with respect to filter convergence. Appl. Math. Sci. 11 (2017), 2825-2833. | DOI | MR

[21] Boccuto, A., Dimitriou, X.: Non-Additive Lattice Group-Valued Set Functions And Limit Theorems. Lambert Acad. Publ., Mauritius 2017.

[22] Boccuto, A., Dimitriou, X.: Equivalence between limit theorems for lattice group-valued $k$-triangular set functions. Mediterranean J. Math. 15 (2018), 1-20. | DOI | MR

[23] Boccuto, A., Dimitriou, X.: Filter exhaustiveness and filter limit theorems for $k$-triangular lattice group-valued set functions. Rend. Lincei Mat. Appl. (2019), in press. | MR

[24] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Some versions of limit and Dieudonné-type theorems with respect to filter convergence for $(\ell)$-group-valued measures. Cent. Eur. J. Math. 9 (2011), 1298-1311. | DOI | MR

[25] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Uniform boundedness principle, Banach-Steinhaus and approximation theorems for filter convergence in Riesz spaces. In: Proc. International Conference on Topology and its Applications ICTA 2011, Cambridge Sci. Publ. 2012, pp. 45-58.

[26] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Schur lemma and limit theorems in lattice groups with respect to filters. Math. Slovaca 62 (2012), 1145-1166. | DOI | MR

[27] Boccuto, A., Riečan, B., Sambucini, A. R.: On the product of $M$-measures in $(\ell)$-groups. Australian J. Math. Anal. Appl. 7 (2010), 9, 1-8. | MR

[28] Boccuto, A., Riečan, B., Vrábelová, M.: Kurzweil-Henstock Integral in Riesz Spaces. Bentham Science Publ., Sharjah 2009. | DOI

[29] Brooks, J. K., Chacon, R. V.: Continuity and compactness of measures. Adv. Math. 37 (1980), 16-26. | DOI | MR

[30] Candeloro, D.: On the Vitali-Hahn-Saks, Dieudonné and Nikodým theorems. (In Italian). Rend. Circ. Mat. Palermo Ser. II Suppl. 8 (1985), 439-445. | MR

[31] Candeloro, D., Letta, G.: On Vitali-Hahn-Saks and Dieudonné theorems. (In Italian). Rend. Accad. Naz. Sci. XL Mem. Mat. 9 (1985), 203-213. | MR

[32] Candeloro, D., Sambucini, A. R.: Filter convergence and decompositions for vector lattice-valued measures. Mediterranean J. Math. 12 (2015), 621-637. | DOI | MR

[33] Cavaliere, P., Lucia, P. de: Regularity and exhaustivity for finitely additive functions. The Dieudonné's convergence theorem. Sci. Math. Japan. 66 (2007), 313-323. | MR

[34] Dieudonné, J.: Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Ci. 23 (1951), 21-38. | MR

[35] Dobrakov, I.: On submeasures I. Dissertationes Math. 112 (1974), 5-35. | MR

[36] Dugundji, J.: Topology. Allyn and Bacon Inc., Boston 1966. | MR

[37] Fremlin, D. H.: A direct proof of the Matthes-Wright integral extension theorem. J. London Math. Soc. 11 (1975), 276-284. | DOI | MR

[38] Guariglia, E.: On Dieudonné's boundedness theorem. J. Math. Anal. Appl. 145 (1990), 447-454. | DOI | MR

[39] Pap, E.: A generalization of a Dieudonné theorem for $k$-triangular set functions. Acta Sci. Math. 50 (1986), 159-167. | DOI | MR

[40] Pap, E.: The Vitali-Hahn-Saks Theorems for $k$-triangular set functions. Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32. | MR

[41] Pap, E.: Null-Additive Set Functions. Kluwer Acad. Publishers/Ister Science, Dordrecht/Bratislava 1995. | MR

[42] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava 1997. | DOI | MR | Zbl

[43] Saeki, S.: The Vitali-Hahn-Saks theorem and measuroids. Proc. Amer. Math. Soc. 114 (1992), 775-782. | DOI | MR

[44] Schachermayer, W.: On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Dissertationes Math. 214 (1982), 1-33. | MR

[45] Stein, J. D., Jr.: A uniform-boundedness theorem for measures. Michigan Math. J. 19 (1972), 161-165. | DOI | MR

[46] Swartz, C.: The Nikodým boundedness Theorem for lattice-valued measures. Arch. Math. 53 (1989), 390-393. | DOI | MR

[47] Ventriglia, F.: Dieudonné's theorem for non-additive set functions. J. Math. Anal. Appl. 367 (2010), 296-303. | DOI | MR

[48] Vulikh, B. Z.: Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff Sci. Publ., Groningen 1967. | MR

Cité par Sources :