Keywords: nullnorm; partial order; bounded lattice; distributivity
@article{10_14736_kyb_2019_2_0217,
author = {A\c{s}{\i}c{\i}, Emel},
title = {An extension of the ordering based on nullnorms},
journal = {Kybernetika},
pages = {217--232},
year = {2019},
volume = {55},
number = {2},
doi = {10.14736/kyb-2019-2-0217},
mrnumber = {4014584},
zbl = {07144935},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0217/}
}
Aşıcı, Emel. An extension of the ordering based on nullnorms. Kybernetika, Tome 55 (2019) no. 2, pp. 217-232. doi: 10.14736/kyb-2019-2-0217
[1] Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46. | DOI | MR
[2] Aşıcı, E.: On the properties of the $ F $-partial order and the equivalence of nullnorms. Fuzzy Sets Syst. 346 (2018), 72-84. | DOI | MR
[3] Aşıcı, E.: Some notes on the $ F $-partial order. In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 78-84. | DOI
[4] Aşıcı, E.: Some remarks on an order induced by uninorms. In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 69-77. | DOI
[5] Aşıcı, E., Karaçal, F.: On the $T$-partial order and properties. Inform. Sci. 267 (2014), 323-333. | DOI | MR
[6] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27. | DOI | MR
[7] Birkhoff, G.: Lattice Theory. Third edition. Providence, 1967. | DOI | MR
[8] Calvo, T., Baets, B. De, Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394. | DOI | MR | Zbl
[9] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159 (2008), 1165-1177. | DOI | MR | Zbl
[10] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms. Int. J. General Syst. 47 (2018), 772-793. | DOI | MR
[11] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. | DOI | MR
[12] Çaylı, G. D., Drygaś, P.: Some properties of idempotent uninorms on a special class of bounded lattices. Inf. Sci. 422 (2018), 352-363. | DOI | MR
[13] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231. | DOI | MR
[14] Drewniak, J., Drygaś, P., Rak, E.: Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159 (2008), 1646-1657. | DOI | MR
[15] Drygaś, P.: Distributive between semi-t-operators and semi-nullnorms. Fuzzy Sets Syst. 264 (2015), 100-109. | DOI | MR
[16] Drygaś, P.: A characterization of idempotent nullnorms. Fuzzy Sets Syst. 145 (2004), 455-461. | DOI | MR
[17] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. | DOI | MR | Zbl
[18] Jayaram, B., Rao, C. J. M.: On the distributivity of implication operators over $ T $ and $ S $ norms. IEEE Trans. Fuzzy Syst. 12 (2004), 194-198. | DOI
[19] Karaçal, F., Ince, M. A., Mesiar, R.: Nullnorms on bounded lattices. Inf.Sci. 325 (2015), 227-236. | DOI | MR
[20] Karaçal, F., Kesicioğlu, M. N.: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. | MR | Zbl
[21] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | DOI | MR | Zbl
[22] Mas, M., Mayor, G., Torrens, J.: t-operators. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 7 (1999), 31-50. | DOI | MR | Zbl
[23] Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128 (2002), 209-225. | DOI | MR | Zbl
[24] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. | DOI | MR | Zbl
Cité par Sources :