An extension of the ordering based on nullnorms
Kybernetika, Tome 55 (2019) no. 2, pp. 217-232
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we generally study an order induced by nullnorms on bounded lattices. We investigate monotonicity property of nullnorms on bounded lattices with respect to the $F$-partial order. Also, we introduce the set of incomparable elements with respect to the F-partial order for any nullnorm on a bounded lattice. Finally, we investigate the relationship between the order induced by a nullnorm and the distributivity property for nullnorms.
In this paper, we generally study an order induced by nullnorms on bounded lattices. We investigate monotonicity property of nullnorms on bounded lattices with respect to the $F$-partial order. Also, we introduce the set of incomparable elements with respect to the F-partial order for any nullnorm on a bounded lattice. Finally, we investigate the relationship between the order induced by a nullnorm and the distributivity property for nullnorms.
DOI : 10.14736/kyb-2019-2-0217
Classification : 03B52, 03E72
Keywords: nullnorm; partial order; bounded lattice; distributivity
@article{10_14736_kyb_2019_2_0217,
     author = {A\c{s}{\i}c{\i}, Emel},
     title = {An extension of the ordering based on nullnorms},
     journal = {Kybernetika},
     pages = {217--232},
     year = {2019},
     volume = {55},
     number = {2},
     doi = {10.14736/kyb-2019-2-0217},
     mrnumber = {4014584},
     zbl = {07144935},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0217/}
}
TY  - JOUR
AU  - Aşıcı, Emel
TI  - An extension of the ordering based on nullnorms
JO  - Kybernetika
PY  - 2019
SP  - 217
EP  - 232
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0217/
DO  - 10.14736/kyb-2019-2-0217
LA  - en
ID  - 10_14736_kyb_2019_2_0217
ER  - 
%0 Journal Article
%A Aşıcı, Emel
%T An extension of the ordering based on nullnorms
%J Kybernetika
%D 2019
%P 217-232
%V 55
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-2-0217/
%R 10.14736/kyb-2019-2-0217
%G en
%F 10_14736_kyb_2019_2_0217
Aşıcı, Emel. An extension of the ordering based on nullnorms. Kybernetika, Tome 55 (2019) no. 2, pp. 217-232. doi: 10.14736/kyb-2019-2-0217

[1] Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46. | DOI | MR

[2] Aşıcı, E.: On the properties of the $ F $-partial order and the equivalence of nullnorms. Fuzzy Sets Syst. 346 (2018), 72-84. | DOI | MR

[3] Aşıcı, E.: Some notes on the $ F $-partial order. In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 78-84. | DOI

[4] Aşıcı, E.: Some remarks on an order induced by uninorms. In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 69-77. | DOI

[5] Aşıcı, E., Karaçal, F.: On the $T$-partial order and properties. Inform. Sci. 267 (2014), 323-333. | DOI | MR

[6] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27. | DOI | MR

[7] Birkhoff, G.: Lattice Theory. Third edition. Providence, 1967. | DOI | MR

[8] Calvo, T., Baets, B. De, Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394. | DOI | MR | Zbl

[9] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159 (2008), 1165-1177. | DOI | MR | Zbl

[10] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms. Int. J. General Syst. 47 (2018), 772-793. | DOI | MR

[11] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. | DOI | MR

[12] Çaylı, G. D., Drygaś, P.: Some properties of idempotent uninorms on a special class of bounded lattices. Inf. Sci. 422 (2018), 352-363. | DOI | MR

[13] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231. | DOI | MR

[14] Drewniak, J., Drygaś, P., Rak, E.: Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159 (2008), 1646-1657. | DOI | MR

[15] Drygaś, P.: Distributive between semi-t-operators and semi-nullnorms. Fuzzy Sets Syst. 264 (2015), 100-109. | DOI | MR

[16] Drygaś, P.: A characterization of idempotent nullnorms. Fuzzy Sets Syst. 145 (2004), 455-461. | DOI | MR

[17] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. | DOI | MR | Zbl

[18] Jayaram, B., Rao, C. J. M.: On the distributivity of implication operators over $ T $ and $ S $ norms. IEEE Trans. Fuzzy Syst. 12 (2004), 194-198. | DOI

[19] Karaçal, F., Ince, M. A., Mesiar, R.: Nullnorms on bounded lattices. Inf.Sci. 325 (2015), 227-236. | DOI | MR

[20] Karaçal, F., Kesicioğlu, M. N.: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. | MR | Zbl

[21] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | DOI | MR | Zbl

[22] Mas, M., Mayor, G., Torrens, J.: t-operators. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 7 (1999), 31-50. | DOI | MR | Zbl

[23] Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128 (2002), 209-225. | DOI | MR | Zbl

[24] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. | DOI | MR | Zbl

Cité par Sources :