A nonmonotone line search for the LBFGS method in parabolic optimal control problems
Kybernetika, Tome 55 (2019) no. 1, pp. 183-202
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper a nonmonotone limited memory BFGS (NLBFGS) method is applied for approximately solving optimal control problems (OCPs) governed by one-dimensional parabolic partial differential equations. A discretized optimal control problem is obtained by using piecewise linear finite element and well-known backward Euler methods. Afterwards, regarding the implicit function theorem, the optimal control problem is transformed into an unconstrained nonlinear optimization problem (UNOP). Finally the obtained UNOP is solved by utilizing the NLBFGS method. In comparison to other existing methods, the NLBFGS method shows a significant improvement especially for nonlinear and ill-posed control problems.
In this paper a nonmonotone limited memory BFGS (NLBFGS) method is applied for approximately solving optimal control problems (OCPs) governed by one-dimensional parabolic partial differential equations. A discretized optimal control problem is obtained by using piecewise linear finite element and well-known backward Euler methods. Afterwards, regarding the implicit function theorem, the optimal control problem is transformed into an unconstrained nonlinear optimization problem (UNOP). Finally the obtained UNOP is solved by utilizing the NLBFGS method. In comparison to other existing methods, the NLBFGS method shows a significant improvement especially for nonlinear and ill-posed control problems.
DOI : 10.14736/kyb-2019-1-0183
Classification : 65K10, 90C30, 90C53
Keywords: optimal control; parabolic partial differential equations; backward Euler method; nonmonotone LBFGS method
@article{10_14736_kyb_2019_1_0183,
     author = {Solaymani Fard, Omid and Sarani, Farhad and Hashemi Borzabadi, Akbar and Nosratipour, Hadi},
     title = {A nonmonotone line search for the {LBFGS} method in parabolic optimal control problems},
     journal = {Kybernetika},
     pages = {183--202},
     year = {2019},
     volume = {55},
     number = {1},
     doi = {10.14736/kyb-2019-1-0183},
     mrnumber = {3935421},
     zbl = {07088885},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-1-0183/}
}
TY  - JOUR
AU  - Solaymani Fard, Omid
AU  - Sarani, Farhad
AU  - Hashemi Borzabadi, Akbar
AU  - Nosratipour, Hadi
TI  - A nonmonotone line search for the LBFGS method in parabolic optimal control problems
JO  - Kybernetika
PY  - 2019
SP  - 183
EP  - 202
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-1-0183/
DO  - 10.14736/kyb-2019-1-0183
LA  - en
ID  - 10_14736_kyb_2019_1_0183
ER  - 
%0 Journal Article
%A Solaymani Fard, Omid
%A Sarani, Farhad
%A Hashemi Borzabadi, Akbar
%A Nosratipour, Hadi
%T A nonmonotone line search for the LBFGS method in parabolic optimal control problems
%J Kybernetika
%D 2019
%P 183-202
%V 55
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-1-0183/
%R 10.14736/kyb-2019-1-0183
%G en
%F 10_14736_kyb_2019_1_0183
Solaymani Fard, Omid; Sarani, Farhad; Hashemi Borzabadi, Akbar; Nosratipour, Hadi. A nonmonotone line search for the LBFGS method in parabolic optimal control problems. Kybernetika, Tome 55 (2019) no. 1, pp. 183-202. doi: 10.14736/kyb-2019-1-0183

[1] Albrecher, H., Runggaldier, W. J., Schachermayer, W.: Advanced Financial Modelling. Radon series on computational and applied mathematics, Walter de Gruyter, 2009. | DOI | MR

[2] Amini, K., Ahookhosh, M., Nosratipour, H.: An inexact line search approach using modified nonmonotone strategy for unconstrained optimization. Numer. Algor. 66 (2014), 49-78. | DOI | MR

[3] Aniţa, S., Arnautu, V., Capasso, V.: An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB. Birkhäuser, Boston 2011. | MR

[4] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York 2006. | DOI | MR | Zbl

[5] Borzi, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations. SIAM, 2012. | DOI | MR

[6] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York 2012. | DOI | MR

[7] Cantrell, S., Cosner, C., Ruan, S.: Spatial Ecology. CRC Mathematical and Computational Biology, CRC Press 2009. | DOI | MR

[8] Chang, R. Y., Yang, S. Y.: Solution of two point boundary value problems by generalized orthogonal polynomials and application to optimal control of lumped and distributed parameter systems. International Journal of Control 43 (1986), 1785-1802. | DOI | MR

[9] Christofides, P., Armaou, A., Lou, Y., Varshney, A.: Control and Optimization of Multiscale Process Systems, Control Engineering. Birkhäuser, Boston 2008. | DOI | MR

[10] Klerk, E. De, Roos, C., Terlaky, T.: Nonlinear Optimization. University Of Waterloo, Waterloo 2005.

[11] Griva, I., Nash, S. G., Sofer, A.: Linear and Nonlinear Optimization. SIAM, Philadelphia 2009. | DOI | MR

[12] Haslinger, J., Neittaanmäki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design. Wiley, 1996. | MR

[13] Heinkenschloss, M.: Numerical Solution of Implicitly Constrained Optimization Problems. CAAM Technical Report TR08-05, Rice University (2008).

[14] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Netherlands 2008. | MR

[15] Horng, I. R., Chou, J. H.: Application of shifted Chebyshev series to the optimal control of linear distributed-parameter systems. Int. J. Control 42 (1985), 233-241. | DOI | MR

[16] Hu, W. W.: Approximation and Control of the Boussinesq Equations with Application to Control of Energy Efficient Building Systems. Ph.D. Thesis, Department of Mathematics, Virginia Tech. 2012.

[17] Ji, Y., Li, Y., Zhang, K., Zhan, X.: A new nonmonotone trust-region method of conic model for solving unconstrained optimization. J. Comput. Appl. Math. 233 (2010), 1746-1754. | DOI | MR

[18] Kunisch, K., Volkwein, S.: Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999), 345-371. | DOI | MR

[19] Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, 1971. | DOI | MR

[20] Liu, D., Nocedal, J.: On the limited memory BFGS method for large-scale optimization. Math. Program. 45 (1989), 503-528. | DOI | MR

[21] Merino, P.: Finite element error estimates for an optimal control problem governed by the Burgers equation. Comput. Optim. Appl. 63 (2016), 793-824. | DOI | MR

[22] Meyer, C., Philip, P., Tröltzsch, F.: Optimal control of a semilinear PDE with nonlocal radiation interface conditions. SIAM J. Control Optim. 45 (2006), 699-721. | DOI | MR

[23] Noack, B. R., Morzynski, M., Tadmor, G.: Reduced-Order Modelling for Flow Control. Springer, Vienna 2011. | DOI

[24] Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35 (1980) 773-782. | DOI | MR | Zbl

[25] Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York 2006. | DOI | MR | Zbl

[26] Nosratipour, H., Borzabadi, A. H., Fard, O. S.: Optimal control of viscous Burgers equation via an adaptive nonmonotone Barzilai-Borwein gradient method. Int. J. Comput. Math. 95 (2018) 1858-1873. | DOI | MR

[27] Nosratipour, H., Borzabadi, A. H., Fard, O. S.: On the nonmonotonicity degree of nonmonotone line searches. Calcolo 54 (2017) 1217-1242. | DOI | MR

[28] Nosratipour, H., Fard, O. S., Borzabadi, A. H.: An adaptive nonmonotone global Barzilai-Borwein gradient method for unconstrained optimization. Optimization 66 (2017) 641-655. | DOI | MR

[29] Rad, J. A., Kazem, S., Parand, K.: Optimal control of a parabolic distributed parameter system via radial basis functions. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2559-2567. | DOI | MR

[30] Razzaghi, M., Arabshahi, A.: Optimal control of linear distributed-parameter systems via polynomial series. Int. J. Systems Sci. 20 (1989), 1141-1148. | DOI | MR

[31] Sabeh, Z., Shamsi, M., Dehghan, M.: Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach. Math. Methods Appl. Sci. 39 (2016), 3350-3360. | DOI | MR

[32] Strang, G., Fix, G.: An Analysis of the Finite Element Method. Wellesley-Cambridge Press, 2008. | MR | Zbl

[33] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate studies in mathematics, American Mathematical Society, 2010. | DOI | MR

[34] Tröltzsch, F., Volkwein, S.: The SQP method for control constrained optimal control of the Burgers equation. ESAIM: COCV 6 (2001), 649-674. | DOI | MR

[35] Wang, F. S., Jian, J. B.: A new nonmonotone linesearch SQP algorithm for unconstrained minimax problem. Numer. Funct. Anal. Optim. 35 (2014), 487-508. | DOI | MR

[36] Yılmaz, F., Karasözen, B.: Solving distributed optimal control problems for the unsteady Burgers equation in COMSOL multiphysics. J. Comput. Appl. Math. 235 (2011), 4839-4850. | DOI | MR

[37] Zhang, H., Hager, W. W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14 (2004), 1043-1056. | DOI | MR

Cité par Sources :