Keywords: optimal control; parabolic partial differential equations; backward Euler method; nonmonotone LBFGS method
@article{10_14736_kyb_2019_1_0183,
author = {Solaymani Fard, Omid and Sarani, Farhad and Hashemi Borzabadi, Akbar and Nosratipour, Hadi},
title = {A nonmonotone line search for the {LBFGS} method in parabolic optimal control problems},
journal = {Kybernetika},
pages = {183--202},
year = {2019},
volume = {55},
number = {1},
doi = {10.14736/kyb-2019-1-0183},
mrnumber = {3935421},
zbl = {07088885},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-1-0183/}
}
TY - JOUR AU - Solaymani Fard, Omid AU - Sarani, Farhad AU - Hashemi Borzabadi, Akbar AU - Nosratipour, Hadi TI - A nonmonotone line search for the LBFGS method in parabolic optimal control problems JO - Kybernetika PY - 2019 SP - 183 EP - 202 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-1-0183/ DO - 10.14736/kyb-2019-1-0183 LA - en ID - 10_14736_kyb_2019_1_0183 ER -
%0 Journal Article %A Solaymani Fard, Omid %A Sarani, Farhad %A Hashemi Borzabadi, Akbar %A Nosratipour, Hadi %T A nonmonotone line search for the LBFGS method in parabolic optimal control problems %J Kybernetika %D 2019 %P 183-202 %V 55 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-1-0183/ %R 10.14736/kyb-2019-1-0183 %G en %F 10_14736_kyb_2019_1_0183
Solaymani Fard, Omid; Sarani, Farhad; Hashemi Borzabadi, Akbar; Nosratipour, Hadi. A nonmonotone line search for the LBFGS method in parabolic optimal control problems. Kybernetika, Tome 55 (2019) no. 1, pp. 183-202. doi: 10.14736/kyb-2019-1-0183
[1] Albrecher, H., Runggaldier, W. J., Schachermayer, W.: Advanced Financial Modelling. Radon series on computational and applied mathematics, Walter de Gruyter, 2009. | DOI | MR
[2] Amini, K., Ahookhosh, M., Nosratipour, H.: An inexact line search approach using modified nonmonotone strategy for unconstrained optimization. Numer. Algor. 66 (2014), 49-78. | DOI | MR
[3] Aniţa, S., Arnautu, V., Capasso, V.: An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB. Birkhäuser, Boston 2011. | MR
[4] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York 2006. | DOI | MR | Zbl
[5] Borzi, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations. SIAM, 2012. | DOI | MR
[6] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York 2012. | DOI | MR
[7] Cantrell, S., Cosner, C., Ruan, S.: Spatial Ecology. CRC Mathematical and Computational Biology, CRC Press 2009. | DOI | MR
[8] Chang, R. Y., Yang, S. Y.: Solution of two point boundary value problems by generalized orthogonal polynomials and application to optimal control of lumped and distributed parameter systems. International Journal of Control 43 (1986), 1785-1802. | DOI | MR
[9] Christofides, P., Armaou, A., Lou, Y., Varshney, A.: Control and Optimization of Multiscale Process Systems, Control Engineering. Birkhäuser, Boston 2008. | DOI | MR
[10] Klerk, E. De, Roos, C., Terlaky, T.: Nonlinear Optimization. University Of Waterloo, Waterloo 2005.
[11] Griva, I., Nash, S. G., Sofer, A.: Linear and Nonlinear Optimization. SIAM, Philadelphia 2009. | DOI | MR
[12] Haslinger, J., Neittaanmäki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design. Wiley, 1996. | MR
[13] Heinkenschloss, M.: Numerical Solution of Implicitly Constrained Optimization Problems. CAAM Technical Report TR08-05, Rice University (2008).
[14] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Netherlands 2008. | MR
[15] Horng, I. R., Chou, J. H.: Application of shifted Chebyshev series to the optimal control of linear distributed-parameter systems. Int. J. Control 42 (1985), 233-241. | DOI | MR
[16] Hu, W. W.: Approximation and Control of the Boussinesq Equations with Application to Control of Energy Efficient Building Systems. Ph.D. Thesis, Department of Mathematics, Virginia Tech. 2012.
[17] Ji, Y., Li, Y., Zhang, K., Zhan, X.: A new nonmonotone trust-region method of conic model for solving unconstrained optimization. J. Comput. Appl. Math. 233 (2010), 1746-1754. | DOI | MR
[18] Kunisch, K., Volkwein, S.: Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999), 345-371. | DOI | MR
[19] Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, 1971. | DOI | MR
[20] Liu, D., Nocedal, J.: On the limited memory BFGS method for large-scale optimization. Math. Program. 45 (1989), 503-528. | DOI | MR
[21] Merino, P.: Finite element error estimates for an optimal control problem governed by the Burgers equation. Comput. Optim. Appl. 63 (2016), 793-824. | DOI | MR
[22] Meyer, C., Philip, P., Tröltzsch, F.: Optimal control of a semilinear PDE with nonlocal radiation interface conditions. SIAM J. Control Optim. 45 (2006), 699-721. | DOI | MR
[23] Noack, B. R., Morzynski, M., Tadmor, G.: Reduced-Order Modelling for Flow Control. Springer, Vienna 2011. | DOI
[24] Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35 (1980) 773-782. | DOI | MR | Zbl
[25] Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York 2006. | DOI | MR | Zbl
[26] Nosratipour, H., Borzabadi, A. H., Fard, O. S.: Optimal control of viscous Burgers equation via an adaptive nonmonotone Barzilai-Borwein gradient method. Int. J. Comput. Math. 95 (2018) 1858-1873. | DOI | MR
[27] Nosratipour, H., Borzabadi, A. H., Fard, O. S.: On the nonmonotonicity degree of nonmonotone line searches. Calcolo 54 (2017) 1217-1242. | DOI | MR
[28] Nosratipour, H., Fard, O. S., Borzabadi, A. H.: An adaptive nonmonotone global Barzilai-Borwein gradient method for unconstrained optimization. Optimization 66 (2017) 641-655. | DOI | MR
[29] Rad, J. A., Kazem, S., Parand, K.: Optimal control of a parabolic distributed parameter system via radial basis functions. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2559-2567. | DOI | MR
[30] Razzaghi, M., Arabshahi, A.: Optimal control of linear distributed-parameter systems via polynomial series. Int. J. Systems Sci. 20 (1989), 1141-1148. | DOI | MR
[31] Sabeh, Z., Shamsi, M., Dehghan, M.: Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach. Math. Methods Appl. Sci. 39 (2016), 3350-3360. | DOI | MR
[32] Strang, G., Fix, G.: An Analysis of the Finite Element Method. Wellesley-Cambridge Press, 2008. | MR | Zbl
[33] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate studies in mathematics, American Mathematical Society, 2010. | DOI | MR
[34] Tröltzsch, F., Volkwein, S.: The SQP method for control constrained optimal control of the Burgers equation. ESAIM: COCV 6 (2001), 649-674. | DOI | MR
[35] Wang, F. S., Jian, J. B.: A new nonmonotone linesearch SQP algorithm for unconstrained minimax problem. Numer. Funct. Anal. Optim. 35 (2014), 487-508. | DOI | MR
[36] Yılmaz, F., Karasözen, B.: Solving distributed optimal control problems for the unsteady Burgers equation in COMSOL multiphysics. J. Comput. Appl. Math. 235 (2011), 4839-4850. | DOI | MR
[37] Zhang, H., Hager, W. W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14 (2004), 1043-1056. | DOI | MR
Cité par Sources :