Multivariate stochastic dominance for multivariate normal distribution
Kybernetika, Tome 54 (2018) no. 6, pp. 1264-1283
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Stochastic dominance is widely used in comparing two risks represented by random variables or random vectors. There are general approaches, based on knowledge of distributions, which are dedicated to identify stochastic dominance. These methods can be often simplified for specific distribution. This is the case of univariate normal distribution, for which the stochastic dominance rules have a very simple form. It is however not straightforward if these rules are also valid for multivariate normal distribution. We propose the stochastic dominance rules for multivariate normal distribution and provide a rigorous proof. In a computational experiment we employ these rules to test its efficiency comparing to other methods of stochastic dominance detection.
Stochastic dominance is widely used in comparing two risks represented by random variables or random vectors. There are general approaches, based on knowledge of distributions, which are dedicated to identify stochastic dominance. These methods can be often simplified for specific distribution. This is the case of univariate normal distribution, for which the stochastic dominance rules have a very simple form. It is however not straightforward if these rules are also valid for multivariate normal distribution. We propose the stochastic dominance rules for multivariate normal distribution and provide a rigorous proof. In a computational experiment we employ these rules to test its efficiency comparing to other methods of stochastic dominance detection.
DOI : 10.14736/kyb-2018-6-1264
Classification : 91B16, 91B28
Keywords: multivariate stochastic dominance; multivariate normal distribution; stochastic dominance rules
@article{10_14736_kyb_2018_6_1264,
     author = {Petrov\'a, Barbora},
     title = {Multivariate stochastic dominance for multivariate normal distribution},
     journal = {Kybernetika},
     pages = {1264--1283},
     year = {2018},
     volume = {54},
     number = {6},
     doi = {10.14736/kyb-2018-6-1264},
     mrnumber = {3902633},
     zbl = {07031773},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1264/}
}
TY  - JOUR
AU  - Petrová, Barbora
TI  - Multivariate stochastic dominance for multivariate normal distribution
JO  - Kybernetika
PY  - 2018
SP  - 1264
EP  - 1283
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1264/
DO  - 10.14736/kyb-2018-6-1264
LA  - en
ID  - 10_14736_kyb_2018_6_1264
ER  - 
%0 Journal Article
%A Petrová, Barbora
%T Multivariate stochastic dominance for multivariate normal distribution
%J Kybernetika
%D 2018
%P 1264-1283
%V 54
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1264/
%R 10.14736/kyb-2018-6-1264
%G en
%F 10_14736_kyb_2018_6_1264
Petrová, Barbora. Multivariate stochastic dominance for multivariate normal distribution. Kybernetika, Tome 54 (2018) no. 6, pp. 1264-1283. doi: 10.14736/kyb-2018-6-1264

[1] Aitchison, J.: The Statistical Analysis of Compositional Data. The Blackburn Press 2003. | MR

[2] Anděl, J.: Základy matematické statistiky. Matfyzpress 2005.

[3] Armbruster, B., Luedtke, J.: Models and formulations for multivariate dominance-constrained stochastic programs. IIE Transactions 47 (2015), 1-14. | DOI

[4] Dentcheva, D., Ruszczýnski, A.: Optimization with multivariate stochastic dominance constraints. Math. Programming 117 (2009), 111-127. | DOI | MR

[5] Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 (1979), 65-70. | MR

[6] Huang, C. C., Vertinsky, I., Ziemba, W. T.: On multiperiod stochastic dominance. J. Financ. Quantitat. Anal. 13 (1978), 1-13. | DOI

[7] Kopa, M., Petrová, B.: Strong and weak multivariate first-order stochastic dominance. SSRN Electron. J. xx (2017), xxx-xxx. | DOI

[8] Levhari, D., Paroush, J., Peleg, B.: Efficiency analysis for multivariate distributions. Rev. Econom. Stud. 42 (1975), 87-91. | DOI

[9] Levy, H.: Stochastic dominance, efficiency criteria and efficient portfolios: the multiperiod case. Amer. Econom. Rev. 63 (1973), 986-994. | DOI

[10] Levy, H.: Stochastic Dominance: Investment Decision Making under Uncertainty. Springer 2006. | MR

[11] Levy, H.: Stochastic Dominance (Investment Decision Making Under Uncertainty). Springer 2016. | MR

[12] Levy, H., Paroush, J.: Multi-period stochastic dominance. J. Financ. Quantitat. Anal. 21 (1974), 428-435. | DOI | MR

[13] Műller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley 2002. | MR

[14] Ortobelli, S.: The classification of parametric choices under uncertainty: analysis of the portfolio choice problem. Theory and Decision 51 (2001), 297-327. | DOI | MR

[15] Ortobelli, S., Lando, T., Petronio, F., Tichý, T.: Asymptotic stochastic dominance rules for sums of iid random variables. J. Comput. Appl. Math. 300 (2016), 432-448. | DOI | MR

[16] Ortobelli, S., Lando, T., Petronio, F., Tichý, T.: Asymptotic multivariate dominance: A financial application. Methodol. Comput. Appl. Probab. 18 (2016), 1097-1115. | DOI | MR

[17] Shaked, M., Shanthikumar, J. G.: Stochastic Orders and their Applications. Academic Press 1993. | MR

[18] Tong, Y. L.: The Multivariate Normal Distribution. Springer Series in Statistics 1990. | DOI | MR

Cité par Sources :