Chance constrained optimal beam design: Convex reformulation and probabilistic robust design
Kybernetika, Tome 54 (2018) no. 6, pp. 1201-1217
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we are concerned with a civil engineering application of optimization, namely the optimal design of a loaded beam. The developed optimization model includes ODE-type constraints and chance constraints. We use the finite element method (FEM) for the approximation of the ODE constraints. We derive a convex reformulation that transforms the problem into a linear one and find its analytic solution. Afterwards, we impose chance constraints on the stress and the deflection of the beam. These chance constraints are handled by a sampling method (Probabilistic Robust Design).
In this paper, we are concerned with a civil engineering application of optimization, namely the optimal design of a loaded beam. The developed optimization model includes ODE-type constraints and chance constraints. We use the finite element method (FEM) for the approximation of the ODE constraints. We derive a convex reformulation that transforms the problem into a linear one and find its analytic solution. Afterwards, we impose chance constraints on the stress and the deflection of the beam. These chance constraints are handled by a sampling method (Probabilistic Robust Design).
DOI : 10.14736/kyb-2018-6-1201
Classification : 49M25, 65C05, 90C15, 90C30
Keywords: optimal design; stochastic programming; chance constrained optimization; probabilistic robust design; geometric programming
@article{10_14736_kyb_2018_6_1201,
     author = {K\r{u}dela, Jakub and Popela, Pavel},
     title = {Chance constrained optimal beam design: {Convex} reformulation and probabilistic robust design},
     journal = {Kybernetika},
     pages = {1201--1217},
     year = {2018},
     volume = {54},
     number = {6},
     doi = {10.14736/kyb-2018-6-1201},
     mrnumber = {3902629},
     zbl = {07031769},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1201/}
}
TY  - JOUR
AU  - Kůdela, Jakub
AU  - Popela, Pavel
TI  - Chance constrained optimal beam design: Convex reformulation and probabilistic robust design
JO  - Kybernetika
PY  - 2018
SP  - 1201
EP  - 1217
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1201/
DO  - 10.14736/kyb-2018-6-1201
LA  - en
ID  - 10_14736_kyb_2018_6_1201
ER  - 
%0 Journal Article
%A Kůdela, Jakub
%A Popela, Pavel
%T Chance constrained optimal beam design: Convex reformulation and probabilistic robust design
%J Kybernetika
%D 2018
%P 1201-1217
%V 54
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1201/
%R 10.14736/kyb-2018-6-1201
%G en
%F 10_14736_kyb_2018_6_1201
Kůdela, Jakub; Popela, Pavel. Chance constrained optimal beam design: Convex reformulation and probabilistic robust design. Kybernetika, Tome 54 (2018) no. 6, pp. 1201-1217. doi: 10.14736/kyb-2018-6-1201

[1] Adam, L., Branda, M.: Nonlinear chance constrained problems: Optimality conditions, regularization and solvers. J. Optim. Theory Appl. 170 (2016), 2, 419-436. | DOI | MR

[2] Beck, A. T., Gomes, W. J. S., Lopez, R. H., Miguel, L. F. F.: A comparison between robust and risk-based optimization under uncertainty. Struct. Multidisciplin. Optim. 52 (2015), 3, 479-492. | DOI | MR

[3] Ben-Tal, A., Ghaoui, L. El, Nemirovski, A.: Robust Optimization. Princeton University Press, 2009. | DOI | MR

[4] Boyd, S. P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York 2004. | DOI | MR | Zbl

[5] Calafiore, G. C., Campi, M. C.: The Scenario approach to robust control design. IEEE Trans. Automat. Control 51 (2006), 5, 742-753. | DOI | MR

[6] Campi, M. C., Garatti, S.: A Sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148 (2011), 257-280. | DOI | MR

[7] Carè, A., Garatti, S., Campi, M. C.: Scenario min-max optimization and the risk of empirical costs. SIAM J. Optim. 25 (2015), 4, 2061-2080. | DOI | MR

[8] Dupačová, J.: Stochastic geometric programming with an application. Kybernetika 46 (2010), 3, 374-386. | MR

[9] Gandomi, A. H., Yang, X.-S., Alavi, A. H.: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engrg. Comput. 29 (2013), 1, 17-35. | DOI

[10] Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Recent Advances in Learning and Control (V. Blondel, S. Boyd and H. Kimura, eds.), Springer-Verlag Limited, Berlin 2008, pp. 95-110. | DOI | MR

[11] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization: Theory, Approximation, and Computation (Advances in Design and Control). SIAM, 2003. | DOI | MR

[12] Laníková, I., Štěpánek, P., Šimůnek, P.: Optimized Design of concrete structures considering environmental aspects. Advances Structural Engrg. 17 (2014), 4, 495-511. | DOI

[13] Lepš, M., Šejnoha, M.: New approach to optimization of reinforced concrete beams. Computers Structures 81 (2003), 1, 1957-1966. | DOI

[14] Luedtke, J., Ahmed, S., Nemhauser, G. L.: An integer programming approach for linear programs with probabilistic constraints. Math. Programm. Ser. A 122 (2010), 247-272. | DOI | MR

[15] Marek, P., Brozzetti, J., Gustar, M.: Probabilistic Assessment of Structures using Monte Carlo Simulation. TeReCo, Praha 2001. | DOI

[16] Nemirovski, A.: On safe tractable approximations of chance constraints. Europ. J. Oper. Res. 219 (2012), 707-718. | DOI | MR

[17] Oberg, E., Jones, F. D., Ryffel, H. H.: Machinery's Handbook Guide. 29th edition. Industrial Press, 2012.

[18] Pagnoncelli, B. K., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: Theory and applications. J. Optim. Theory Appl. 142 (2009), 399-416. | DOI | MR

[19] Rozvany, G. I. N., (eds.), T. Lewiński: CISM Courses and Lectures: Topology Optimization in Structural and Continuum Mechanics. Springer-Verlag, Wien 2014. | MR

[20] Ruszczynski, A., (eds.), A. Shapiro: Handbooks in Operations Research and Management Science: Stochastic Programming. Elsevier, Amsterdam 2003. | MR

[21] Šabartová, Z., Popela, P.: Beam design optimization model with FEM based constraints. Mendel J. Ser. 1 (2012), 422-427.

[22] Smith, I. M., Griffiths, D. V.: Programming the Finite Element Method. Fourth edition. John Wiley and Sons, New York 2004. | MR

[23] Young, W. C., Budynas, R. G., Sadegh, A. M.: Roark's Formulas for Stress and Strain. Seventh edition. McGraw-Hill Education, 2002. | MR

[24] Žampachová, E., Popela, P., Mrázek, M.: Optimum beam design via stochastic programming. Kybernetika 46 (2010), 3, 571-582. | MR

[25] Zhuang, X., Pan, R.: A sequential sampling strategy to improve reliability-based design optimization with implicit constraint functions. J. Mechan. Design 134 (2012), 2, Article number 021002. | DOI

Cité par Sources :