Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization
Kybernetika, Tome 54 (2018) no. 6, pp. 1167-1183.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ($CVaRD$) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the $CVaRD$-based Sharpe ratio on the utility function and the associated risk aversion level.
DOI : 10.14736/kyb-2018-6-1167
Classification : 34E05, 35K55, 70H20, 90C15, 91B16, 91B70
Keywords: dynamic stochastic portfolio optimization; Hamilton-Jacobi-Bellman equation; Conditional value-at-risk; $CVaRD$-based Sharpe ratio
@article{10_14736_kyb_2018_6_1167,
     author = {Kilianov\'a, So\v{n}a and \v{S}ev\v{c}ovi\v{c}, Daniel},
     title = {Expected utility maximization and conditional value-at-risk deviation-based {Sharpe} ratio in dynamic stochastic portfolio optimization},
     journal = {Kybernetika},
     pages = {1167--1183},
     publisher = {mathdoc},
     volume = {54},
     number = {6},
     year = {2018},
     doi = {10.14736/kyb-2018-6-1167},
     mrnumber = {3902627},
     zbl = {07031767},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1167/}
}
TY  - JOUR
AU  - Kilianová, Soňa
AU  - Ševčovič, Daniel
TI  - Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization
JO  - Kybernetika
PY  - 2018
SP  - 1167
EP  - 1183
VL  - 54
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1167/
DO  - 10.14736/kyb-2018-6-1167
LA  - en
ID  - 10_14736_kyb_2018_6_1167
ER  - 
%0 Journal Article
%A Kilianová, Soňa
%A Ševčovič, Daniel
%T Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization
%J Kybernetika
%D 2018
%P 1167-1183
%V 54
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1167/
%R 10.14736/kyb-2018-6-1167
%G en
%F 10_14736_kyb_2018_6_1167
Kilianová, Soňa; Ševčovič, Daniel. Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization. Kybernetika, Tome 54 (2018) no. 6, pp. 1167-1183. doi : 10.14736/kyb-2018-6-1167. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1167/

Cité par Sources :