Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization
Kybernetika, Tome 54 (2018) no. 6, pp. 1167-1183
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ($CVaRD$) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the $CVaRD$-based Sharpe ratio on the utility function and the associated risk aversion level.
In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ($CVaRD$) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the $CVaRD$-based Sharpe ratio on the utility function and the associated risk aversion level.
DOI : 10.14736/kyb-2018-6-1167
Classification : 34E05, 35K55, 70H20, 90C15, 91B16, 91B70
Keywords: dynamic stochastic portfolio optimization; Hamilton-Jacobi-Bellman equation; Conditional value-at-risk; $CVaRD$-based Sharpe ratio
@article{10_14736_kyb_2018_6_1167,
     author = {Kilianov\'a, So\v{n}a and \v{S}ev\v{c}ovi\v{c}, Daniel},
     title = {Expected utility maximization and conditional value-at-risk deviation-based {Sharpe} ratio in dynamic stochastic portfolio optimization},
     journal = {Kybernetika},
     pages = {1167--1183},
     year = {2018},
     volume = {54},
     number = {6},
     doi = {10.14736/kyb-2018-6-1167},
     mrnumber = {3902627},
     zbl = {07031767},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1167/}
}
TY  - JOUR
AU  - Kilianová, Soňa
AU  - Ševčovič, Daniel
TI  - Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization
JO  - Kybernetika
PY  - 2018
SP  - 1167
EP  - 1183
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1167/
DO  - 10.14736/kyb-2018-6-1167
LA  - en
ID  - 10_14736_kyb_2018_6_1167
ER  - 
%0 Journal Article
%A Kilianová, Soňa
%A Ševčovič, Daniel
%T Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization
%J Kybernetika
%D 2018
%P 1167-1183
%V 54
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1167/
%R 10.14736/kyb-2018-6-1167
%G en
%F 10_14736_kyb_2018_6_1167
Kilianová, Soňa; Ševčovič, Daniel. Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization. Kybernetika, Tome 54 (2018) no. 6, pp. 1167-1183. doi: 10.14736/kyb-2018-6-1167

[1] Abe, R., Ishimura, N.: Existence of solutions for the nonlinear partial differential equation arising in the optimal investment problem. Proc. Japan Acad. Ser. A 84 (2008), 1, 11-14. | DOI | MR

[2] Agarwal, V., Naik, N. Y.: Risk and portfolio decisions involving hedge funds. Rev. Financ. Stud. 17 (2004), 1, 63-98. | DOI

[3] Andrieu, L., Lara, M. De, Seck, B.: Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions. https://arxiv.org/pdf/0906.3425.pdf

[4] Arrow, K. J.: Aspects of the theory of risk bearing. In: The Theory of Risk Aversion. Helsinki: Yrjo Jahnssonin Saatio. (Reprinted in: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago, 1971), (1965), pp. 90-109. | MR

[5] Aubin, J. P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9 (1984), 87-111. | DOI | MR

[6] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Licensed ed. Birkhauser Verlag, Basel-Boston, Mass., 1983. | DOI | MR

[7] Bertsekas, D. P.: Dynamic Programming and Stochastic Control. Academic Press, New York 1976. | DOI | MR

[8] Biglova, A., Ortobelli, S., Rachev, S., Stoyanov, S.: Different Approaches to Risk Estimation in Portfolio Theory. J. Portfolio Management 31 (2004), 1, 103-112. | DOI

[9] Browne, S.: Risk-constrained dynamic active portfolio management. Management Sci. 46 (2000), 9, 1188-1199. | DOI

[10] Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., Laeven, R.: Risk measurement with equivalent utility principles. Statist. Decisions 24 (2006), 1-25. | DOI | MR

[11] Farinelli, S., Ferreira, M., Rosselloc, D., Thoeny, M., Tibiletti, L.: Beyond Sharpe ratio: Optimal asset allocation using different performance ratios. J. Banking Finance 32 (2008), 10, 2057-2063. | DOI

[12] Huang, Y., Forsyth, P. A., Labahn, G.: Combined fixed point and policy iteration for Hamilton-Jacobi-Bellman equations in finance. SIAM J. Numer. Anal. 50 (2012), 4, 1861-1882. | DOI | MR

[13] Ishimura, N., Koleva, M. N., Vulkov, L. G.: Numerical solution via transformation methods of nonlinear models in option pricing. AIP Conference Proceedings 1301 (2010), 1, 387-394. | DOI

[14] Ishimura, N., Ševčovič, D.: On traveling wave solutions to a Hamilton-Jacobi-Bellman equation with inequality constraints. Japan J. Ind. Appl. Math. 30 (2013), 1, 51-67. | DOI | MR

[15] Karatzas, I., Lehoczky, J. P., Sethi, S. P., Shreve, S.: Explicit solution of a general consumption/investment problem. Math. Oper. Res. 11 (1986), 2, 261-294. | DOI | MR

[16] Kilianová, S., Ševčovič, D.: A transformation method for solving the Hamilton-Jacobi-Bellman equation for a constrained dynamic stochastic optimal allocation problem. ANZIAM J. 55 (2013), 14-38. | DOI | MR

[17] Kilianová, S., Trnovská, M.: Robust portfolio optimization via solution to the Hamilton-Jacobi-Bellman equation. Int. J. Comput. Math. 93 (2016), 725-734. | DOI | MR

[18] Klatte, D.: On the {L}ipschitz behavior of optimal solutions in parametric problems of quadratic optimization and linear complementarity. Optim. J. Math. Program. Oper. Res. 16 (1985), 6, 819-831. | DOI | MR

[19] Koleva, M. N.: Iterative methods for solving nonlinear parabolic problem in pension saving management. AIP Confer. Proc. 1404 (2011), 1, 457-463. | DOI

[20] Koleva, M. N., Vulkov, L.: Quasilinearization numerical scheme for fully nonlinear parabolic problems with applications in models of mathematical finance. Math. Comput. Modell. 57 (2013), 2564-2575. | DOI | MR

[21] Kútik, P., Mikula, K.: Finite volume schemes for solving nonlinear partial differential equations in financial mathematics. In: Finite Volumes for Complex Applications VI, Problems and Perspectives (J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, eds.), Springer Proc. Math. 4 (2011), pp. 643-651. | DOI | MR

[22] LeVeque, R. J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge 2002. | DOI | MR

[23] Lin, S., Ohnishi, M.: Optimal portfolio selection by CVaR based Sharpe ratio genetic algorithm approach. Sci. Math. Japon. Online e-2006 (2006), 1229-1251. | MR

[24] Macová, Z., Ševčovič, D.: Weakly nonlinear analysis of the Hamilton-Jacobi-Bellman equation arising from pension savings management. Int. J. Numer. Anal. Model. 7 (2010), 4, 619-638. | MR

[25] McNeil, A. J., Frey, R., Embrechts, P.: Quantitattive Risk Management. Princeton Series in Finance, Princeton University Press, 2005. | DOI | MR

[26] Merton, R. C.: Optimal consumption and portfolio rules in a continuous time model. J. Economic Theory 71 (1971), 373-413. | DOI | MR

[27] Milgrom, P., Segal, I.: Envelope theorems for arbitrary choice sets. Econometrica 70 (2002), 2, 583-601. | DOI | MR

[28] Musiela, M., Zariphopoulou, T.: An example of indifference prices under exponential preferences. Finance Stochast. 8 (2004), 2, 229-239. | DOI | MR

[29] Muthuraman, K., Kumar, S.: Multidimensional portfolio optimization with proportional transaction costs. Math. Finance 16 (2006), 2, 301-335. | DOI | MR

[30] Pflug, G. Ch., Römisch, W.: Modeling, Measuring and Managing Risk. World Scientific Publushing, 2007. | DOI | MR

[31] Post, T., Fang, Y., Kopa, M.: Linear tests for DARA stochastic dominance. Management Sci. 61 (2015), 1615-1629. | DOI | MR

[32] Pratt, J. W.: Risk aversion in the small and in the large. Econometrica. 32 (1964), 1-2, 122-136. | DOI | Zbl

[33] Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations. Springer-Verlag, New York 1984. | DOI | MR

[34] Reisinger, C., Witte, J. H.: On the use of policy iteration as an easy way of pricing American options. SIAM J. Financ. Math. 3 (2012), 459-478. | DOI | MR

[35] Seck, B., Andrieu, L., Lara, M. De: Parametric multi-attribute utility functions for optimal profit under risk constraints. Theory Decision. 72 (2012), 2, 257-271. | DOI | MR

[36] Sharpe, W. F.: The Sharpe ratio. J. Portfolio Management 21 (1994), 1, 49-58. | DOI

[37] Ševčovič, D., Stehlíková, B., Mikula, K.: Analytical and Numerical Methods for Pricing Financial Derivatives. Nova Science Publishers, Inc., Hauppauge 2011.

[38] Tourin, A., Zariphopoulou, T.: Numerical schemes for investment models with singular transactions. Comput. Econ. 7 (1994), 4, 287-307. | DOI | MR

[39] Vickson, R. G.: Stochastic dominance for decreasing absolute risk aversion. J. Financial Quantitative Analysis 10 (1975), 799-811. | DOI

[40] Wiesinger, A.: Risk-Adjusted Performance Measurement State of the Art. Bachelor Thesis of the University of St. Gallen School of Business Administration, Economics, Law and Social Sciences (HSG), 2010.

[41] Xia, J.: Risk aversion and portfolio selection in a continuous-time model. J. Control Optim. 49 (2011), 5, 1916-1937. | DOI | MR

[42] Zariphopoulou, T.: Consumption-investment models with constraints. SIAM J. Control Optim. 32 (1994), 1, 59-85. | DOI | MR

[43] Zheng, H.: Efficient frontier of utility and CVaR. Math. Meth. Oper. Res. 70 (2009), 1, 129-148. | DOI | MR

Cité par Sources :