Keywords: GARCH model; Kalman filter; outlier; robust recursive estimation; volatility
@article{10_14736_kyb_2018_6_1138,
author = {Cipra, Tom\'a\v{s} and Hendrych, Radek},
title = {Robust recursive estimation of {GARCH} models},
journal = {Kybernetika},
pages = {1138--1155},
year = {2018},
volume = {54},
number = {6},
doi = {10.14736/kyb-2018-6-1138},
mrnumber = {3902625},
zbl = {07031765},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1138/}
}
Cipra, Tomáš; Hendrych, Radek. Robust recursive estimation of GARCH models. Kybernetika, Tome 54 (2018) no. 6, pp. 1138-1155. doi: 10.14736/kyb-2018-6-1138
[1] Aknouche, A., Guerbyenne, H.: Recursive estimation of GARCH models. Comm. Statist. Simul. Comput. 35 (2006), 925-938. | DOI | MR
[2] Balke, N. S., Fomby, T. B.: Large shocks, small shocks, and economic fluctuations: outliers in macroeconomics time series. J. Appl. Econometr. 31 (1994), 307-327. | DOI
[3] Bernholt, T., Fried, R., Gather, U., Wegener, I.: Modified repeated median filters. Statist. Comput. 16 (2006), 177-192. | DOI | MR
[4] Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econometr. 31 (1986), 307-327. | DOI | MR
[5] Bose, A., Mukherjee, K.: Estimating the ARCH parameters by solving linear equations. J. Time Series Anal. 24 (2003), 127-136. | DOI | MR
[6] Calvet, L. E., Czellar, V., Ronchetti, E.: Robust filtering. J. Amer. Statist. Assoc. 110 (2015), 1591-1606. | DOI | MR
[7] Carnero, M. A., Peña, D., Ruiz, E.: Effects of outliers on the identification and estimation of GARCH models. J. Time Series Anal. 28 (2007), 471-497. | DOI | MR
[8] Carnero, M. A., Peña, D., Ruiz, E.: Estimating GARCH volatility in the presence of outliers. Econom. Lett. 114 (2012), 86-90. | DOI | MR
[9] Charles, A.: Forecasting volatility with outliers in GARCH models. J. Forecast. 27 (2008), 551-565. | DOI | MR
[10] Charles, A., Darné, O.: Outliers and GARCH models in financial data. Econom. Lett. 86 (2005), 347-352. | DOI | MR
[11] Cipra, T.: Robust exponential smoothing. J. Forecast. 11 (1992), 57-69. | DOI
[12] Cipra, T.: Robust recursive estimation in nonlinear time-series. Comm. Statist. Theory Methods 27 (1998), 1071-1082. | DOI | MR
[13] Cipra, T., Hanzák, T.: Exponential smoothing for time series with outliers. Kybernetika 47 (2011), 165-178. | MR
[14] Cipra, T., Romera, R.: Robust Kalman filter and its applications in time series analysis. Kybernetika 27 (1991), 481-494. | MR
[15] Crevits, R., Croux, C.: Forecasting using robust exponential smoothing with damped trend and seasonal components. Working paper KBI_1714, KU Leuven, Leuven 2016 (DOI:10.13140/RG.2.2.11791.18080). | DOI
[16] Croux, C., Gelper, S.: Computational aspects of robust Holt-Winters smoothing based on M-estimation. Appl. Math. 53 (2008), 163-176. | DOI | MR
[17] Croux, C., Gelper, S. E. C., Mahieu, K.: Robust exponential smoothing of multivariate time series. Comput. Statist. Data Anal. 54 (2010), 2999-3006. | DOI | MR
[18] Dalhaus, R., Rao, S. S.: A recursive online algorithm for the estimation of time-varying ARCH parameters. Bernoulli 13 (2007), 389-422. | DOI | MR
[19] Engle, R. F.: Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 (1982), 987-1007. | DOI | MR
[20] Eraker, B., Johannes, M., Polson, N.: The impact of jumps in volatility and returns. J. Finance 58 (2003), 1269-1300. | DOI
[21] Fasso, A.: Recursive least squares with ARCH errors and nonparametric modelling of environmental time series. Working Paper 6, University of Bergamo 2009.
[22] Franke, J., Härdle, W. K., Hafner, C. M.: Statistics of Financial Markets: An Introduction. Springer, Berlin 2011. | DOI | MR
[23] Franses, P. H., Ghijsels, H.: Additive outliers, GARCH and forecasting volatility. Int. J. Forecast. 15 (1999), 1-9. | DOI
[24] Galeano, P., Peña, D.: Finding outliers in linear and nonlinear time series. In: Robustness and Complex Data Structures (C. Becker, R. Fried, S. Kuhnt, eds.), Springer, Berlin 2013, pp. 243-260. | DOI | MR
[25] Gelper, S., Fried, R., Croux, C.: Robust forecasting with exponential and Holt-Winters smoothing. J. Forecast. 29 (2009), 285-300. | DOI | MR | Zbl
[26] Gerencsér, L., Orlovits, Z., Torma, B.: Recursive estimation of GARCH processes. In: Proc. 19th International Symposium on Mathematical Theory and Systems - MTNS (A. Edelmayer, ed.), Eötvös Loránd University, Budapest 2010, pp. 2415-2422.
[27] Grané, A., Veiga, H.: Wavelet based detection of outliers in financial time series. Comput. Statist. Data Anal. 54 (2010), 2580-2593. | DOI | MR
[28] Gregory, A. V., Reeves, J. J.: Estimation and inference in ARCH model in the presence of outliers. J. Financ. Econometr. 8 (2010), 547-569. | DOI
[29] Grillenzoni, C.: Optimized adaptive prediction. J. Ital. Statist. Soc. 6 (1997), 37-58. | DOI
[30] Grillenzoni, C.: Recursive generalized M-estimators of system parameters. Technometrics 39 (1997), 211-224. | DOI
[31] Hendrych, R., Cipra, T.: Robustified on-line estimation of the EWMA models: Simulations and applications. In: Proc. 33rd International Conference Mathematical Methods in Economics (D. Martinčák, J. Ircingová, and P. Janeček, eds.). University of West Bohemia, Pilsen 2014, pp. 237-242. | DOI
[32] Hendrych, R., Cipra, T.: Self-weighted recursive estimation of GARCH models. Comm. Statist. Simul. Comput. 47 (2018), 315-328. | DOI | MR
[33] Hill, J. B.: Robust estimation and inference for heavy tailed GARCH. Bernoulli 21 (2015), 1629-1669. | DOI | MR
[34] Hotta, L. K., Tsay, R. S.: Outliers in GARCH processes. In: Economic time series: Modeling and seasonality (W. R. Bell, S. H. Holan, and T. S. McElroy, eds.). CRC Press, Boca Raton 2012, pp. 337-358. | DOI | MR
[35] Hyndman, R. J., Koehler, A. B., Ord, J. K., Snyder, R. D.: Forecasting with Exponential Smoothing. The State Space Approach. Springer, Berlin 2008. | DOI
[36] Jiang, J., Zhao, Q., Hui, Y. V.: Robust modelling of ARCH models. J. Forecast. 20 (2001), 111-133. | DOI
[37] Kierkegaard, J., Nielsen, J., Jensen, L., Madsen, H.: Estimating GARCH models using recursive methods.
[38] Koch, K. R., Yang, Y.: Robust Kalman filter for rank deficient observation models. J. Geodesy 72 (1998), 436-441. | DOI
[39] Lanius, V., Gather, U.: Robust online signal extraction from multivariate time series. Comput. Statist. Data Anal. 54 (2010), 966-975. | DOI | MR
[40] Ling, S.: Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/ IGARCH models. J. Econometr. 140 (2007), 849-873. | DOI | MR
[41] Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Upper Saddle River 1999.
[42] Ljung, L., Söderström, T. S.: Theory and Practice of Recursive Identification. MIT Press, Cambridge 1983. | MR
[43] Michálek, J.: Robust methods in exponential smoothing. Kybernetika 32 (1996), 289-306. | MR
[44] Muler, N., Yohai, V.: Robust estimates for GARCH models. J. Statist. Planning Inference 138 (2008), 2918-2940. | DOI | MR
[45] Park, B.-J.: An outlier robust GARCH model and forecasting volatility of exchange rate returns. J. Forecast. 21 (2002), 381-393. | DOI
[46] Peng, L., Yao, Q.: Least absolute deviations estimation for ARCH and GARCH models. Biometrika 90 (2003), 967-975. | DOI | MR
[47] Romera, R., Cipra, T.: On practical implementation of robust Kalman filtering. Comm. Statist. Simul. Comput. 24 (1995), 461-488. | DOI | MR | Zbl
[48] Ruckdeschel, P., Spangl, B., Pupashenko, D.: Robust Kalman tracking and smoothing with propagating and non propagating outliers. Statist. Papers 55 (2014), 93-123. | DOI | MR
[49] Sakata, S., White, H.: High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility. Econometrica 66 (1998), 529-567. | DOI
[50] Shaolin, H. U., Meinke, K., Ouyang, H., Guoji, S.: Outlier-tolerant Kalman filter of state vectors in linear stochastic system. Int. J. Advanced Computer Sci. Appl. 2 (2011), 37-41. | DOI
[51] Söderström, T. S., Stoica, P.: System Identification. Prentice Hall, New York 1989.
[52] Tsay, R. S.: Analysis of Financial Time Series. Wiley, Hoboken 2013. | MR
[53] Yang, Y.: Adaptively robust Kalman filters with applications in navigation. In: Sciences of Geodesy (G. Xu, ed.), Springer, Berlin 2010, pp. 49-82. | DOI
[54] Yang, Y., Gao, W., Zhang, X.: Robust Kalman filtering with constraints: a case study for integrated navigation. J. Geodesy 84 (2010), 373-381. | DOI
[55] Zhang, R., Ling, S.: Asymptotic inference for AR models with heavy-tailed G-GARCH noises. Econometr. Theory 31 (2015), 880-890. | DOI | MR
[56] Zhu, K., Li, W. K.: A new Pearson-type QMLE for conditionally heteroskedastic models. J. Business Econom. Statist. 33 (2015), 552-565. | DOI | MR
[57] Zhu, K., Ling, S.: Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models. Ann. Statist. 39 (2011), 2131-2163. | DOI | MR
[58] Zhu, K., Ling, S.: LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises. J. Amer. Statist. Assoc. 110 (2015), 784-794. | DOI | MR
Cité par Sources :