Modeling of the temperature distribution of a greenhouse using finite element differential neural networks
Kybernetika, Tome 54 (2018) no. 5, pp. 1033-1048.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Most of the existing works in the literature related to greenhouse modeling treat the temperature within a greenhouse as homogeneous. However, experimental data show that there exists a temperature spatial distribution within a greenhouse, and this gradient can produce different negative effects on the crop. Thus, the modeling of this distribution will allow to study the influence of particular climate conditions on the crop and to propose new temperature control schemes that take into account the spatial distribution of the temperature. In this work, a Finite Element Differential Neural Network (FE-DNN) is proposed to model a distributed parameter system with a measurable disturbance input. The learning laws for the FE-DNN are derived by means of Lyapunov's stability analysis and a bound for the identification error is obtained. The proposed neuro identifier is then employed to model the temperature distribution of a greenhouse prototype using data measured inside the greenhouse, and showing good results.
DOI : 10.14736/kyb-2018-5-1033
Classification : 93C20, 93C95
Keywords: differential neural networks; distributed parameter systems; greenhouse temperature modeling
@article{10_14736_kyb_2018_5_1033,
     author = {Bello-Robles, Juan Carlos and Begovich, Ofelia and Ruiz-Le\'on, Javier and Fuentes-Aguilar, Rita Quetziquel},
     title = {Modeling of the temperature distribution of a greenhouse using finite element differential neural networks},
     journal = {Kybernetika},
     pages = {1033--1048},
     publisher = {mathdoc},
     volume = {54},
     number = {5},
     year = {2018},
     doi = {10.14736/kyb-2018-5-1033},
     mrnumber = {3893134},
     zbl = {07031758},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1033/}
}
TY  - JOUR
AU  - Bello-Robles, Juan Carlos
AU  - Begovich, Ofelia
AU  - Ruiz-León, Javier
AU  - Fuentes-Aguilar, Rita Quetziquel
TI  - Modeling of the temperature distribution of a greenhouse using finite element differential neural networks
JO  - Kybernetika
PY  - 2018
SP  - 1033
EP  - 1048
VL  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1033/
DO  - 10.14736/kyb-2018-5-1033
LA  - en
ID  - 10_14736_kyb_2018_5_1033
ER  - 
%0 Journal Article
%A Bello-Robles, Juan Carlos
%A Begovich, Ofelia
%A Ruiz-León, Javier
%A Fuentes-Aguilar, Rita Quetziquel
%T Modeling of the temperature distribution of a greenhouse using finite element differential neural networks
%J Kybernetika
%D 2018
%P 1033-1048
%V 54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1033/
%R 10.14736/kyb-2018-5-1033
%G en
%F 10_14736_kyb_2018_5_1033
Bello-Robles, Juan Carlos; Begovich, Ofelia; Ruiz-León, Javier; Fuentes-Aguilar, Rita Quetziquel. Modeling of the temperature distribution of a greenhouse using finite element differential neural networks. Kybernetika, Tome 54 (2018) no. 5, pp. 1033-1048. doi : 10.14736/kyb-2018-5-1033. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1033/

Cité par Sources :