Keywords: differential neural networks; distributed parameter systems; greenhouse temperature modeling
@article{10_14736_kyb_2018_5_1033,
author = {Bello-Robles, Juan Carlos and Begovich, Ofelia and Ruiz-Le\'on, Javier and Fuentes-Aguilar, Rita Quetziquel},
title = {Modeling of the temperature distribution of a greenhouse using finite element differential neural networks},
journal = {Kybernetika},
pages = {1033--1048},
year = {2018},
volume = {54},
number = {5},
doi = {10.14736/kyb-2018-5-1033},
mrnumber = {3893134},
zbl = {07031758},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1033/}
}
TY - JOUR AU - Bello-Robles, Juan Carlos AU - Begovich, Ofelia AU - Ruiz-León, Javier AU - Fuentes-Aguilar, Rita Quetziquel TI - Modeling of the temperature distribution of a greenhouse using finite element differential neural networks JO - Kybernetika PY - 2018 SP - 1033 EP - 1048 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1033/ DO - 10.14736/kyb-2018-5-1033 LA - en ID - 10_14736_kyb_2018_5_1033 ER -
%0 Journal Article %A Bello-Robles, Juan Carlos %A Begovich, Ofelia %A Ruiz-León, Javier %A Fuentes-Aguilar, Rita Quetziquel %T Modeling of the temperature distribution of a greenhouse using finite element differential neural networks %J Kybernetika %D 2018 %P 1033-1048 %V 54 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1033/ %R 10.14736/kyb-2018-5-1033 %G en %F 10_14736_kyb_2018_5_1033
Bello-Robles, Juan Carlos; Begovich, Ofelia; Ruiz-León, Javier; Fuentes-Aguilar, Rita Quetziquel. Modeling of the temperature distribution of a greenhouse using finite element differential neural networks. Kybernetika, Tome 54 (2018) no. 5, pp. 1033-1048. doi: 10.14736/kyb-2018-5-1033
[1] Aguilar-Leal, O., Fuentes, R.Q., Chairez, I., Garcia, A., Huegel, J. C.: Distributed parameter system identification using finite element differential neural networks. Applied Soft Computing 43 (2016), 663-642. | DOI
[2] Baille, A., Kittas, C., Katsoulas, N.: Influence of whitening on greenhouse microclimate and crop energy partitioning. Agricultural Forest Meteorology 107 (2001), 4, 293-306. | DOI
[3] Chairez, I., Fuentes, R., Poznyak, A., Poznyak, T., Escudero, M., Viana, L.: DNN-state identification of 2D distributed parameter systems. Int. J. Systems Sci. 43 (2012), 2, 296-307. | DOI | MR
[4] Chen, J., Cai, Y., Xu, F., Hu, H., Ai, Q.: Analysis and optimization of the fan-pad evaporative cooling system for greenhouse based on CFD. Advances Mechanical Engrg. 6 (2014), 712-740. | DOI
[5] Evans, L. C.: Partial Differential Equations. American Mathematical Soc., 2010. | MR
[6] Fargues, J., Smits, N., Rougier, M., Boulard, T., Ridray, G., Lagier, J., Jeannequin, B., Fatnassi, H., Mermier, M.: Effect of microclimate heterogeneity and ventilation system on entomopathogenic hyphomycete infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean greenhouse tomato. Biolog. Control 32 (2005), 3, 461-472. | DOI
[7] Ferreira, P. M., Faria, E. A., Ruano, A. E.: Neural network models in greenhouse air temperature prediction. Neurocomputing 43 (2002), 1, 51-75. | DOI
[8] Fuentes, R., Poznyak, A., Chairez, I., Franco, M., Poznyak, T.: Continuous neural networks applied to identify a class of uncertain parabolic partial differential equations. Int. J. Model. Simul. Sci. Comput. 1 (2010), 4, 485-508. | DOI
[9] Hasni, A., Taibi, R., Draoui, B., Boulard, T.: Optimization of greenhouse climate model parameters using particle swarm optimization and genetic algorithms. Energy Procedia 6 (2011), 371-380. | DOI
[10] Kwon, Y. W., Bang, H.: The Finite Element Method Using MATLAB. CRC Press, 2000. | DOI | MR
[11] Perez-Cruz, J. H., Alanis, A., Rubio, J., Pacheco, J.: System identification using multilayer differential neural networks: a new result. J. Appl. Math. 2012 (2012), 1-20. | DOI | MR
[12] Perez-Gonzalez, A., Begovich, O., Ruiz-León, J.: Modeling of a greenhouse prototype using PSO algorithm based on a LabView TM application. In: Proc. 2014 International Conference on Electrical Engineering, Computing Science and Automatic Control 1-6.
[13] Poznyak, A. S., Sanchez, E. N., Wen, Y.: Differential Neural Networks for Robust Nonlinear Control: Identification, State Estimation and Trajectory Tracking. World Scientific, 2001. | DOI
[14] Salgado, P., Cunha, J. B.: Greenhouse climate hierarchical fuzzy modelling. Control Engrg. Practice 13 (2005), 5, 613-628. | DOI
[15] Strauss, W. A.: Partial Differential Equations: An Introduction. John Wiley and Sons Inc, 2007. | MR
[16] Zhang, X. M., Han, Q. L.: Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Networks 22 (2011), 8, 1180-1192. | DOI | MR
[17] Zhang, X. M., Han, Q. L.: State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality. IEEE Trans. Neural Networks Learning Systems 29 (2018), 4, 1376-1381. | DOI
[18] Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z: The Finite Element Method: Its Basis and Fundamentals. Elsevier Butterworth-Heinemann, 2005. | MR
Cité par Sources :