Sliding-mode pinning control of complex networks
Kybernetika, Tome 54 (2018) no. 5, pp. 1011-1032
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.
In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.
DOI : 10.14736/kyb-2018-5-1011
Classification : 05C82, 93C10, 93D05
Keywords: complex network; pinning control; sliding mode; backstepping; trajectory tracking
@article{10_14736_kyb_2018_5_1011,
     author = {Suarez, Oscar J. and Vega, Carlos J. and Elvira-Ceja, Santiago and Sanchez, Edgar N. and Rodriguez, David I.},
     title = {Sliding-mode pinning control of complex networks},
     journal = {Kybernetika},
     pages = {1011--1032},
     year = {2018},
     volume = {54},
     number = {5},
     doi = {10.14736/kyb-2018-5-1011},
     mrnumber = {3893133},
     zbl = {07031757},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1011/}
}
TY  - JOUR
AU  - Suarez, Oscar J.
AU  - Vega, Carlos J.
AU  - Elvira-Ceja, Santiago
AU  - Sanchez, Edgar N.
AU  - Rodriguez, David I.
TI  - Sliding-mode pinning control of complex networks
JO  - Kybernetika
PY  - 2018
SP  - 1011
EP  - 1032
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1011/
DO  - 10.14736/kyb-2018-5-1011
LA  - en
ID  - 10_14736_kyb_2018_5_1011
ER  - 
%0 Journal Article
%A Suarez, Oscar J.
%A Vega, Carlos J.
%A Elvira-Ceja, Santiago
%A Sanchez, Edgar N.
%A Rodriguez, David I.
%T Sliding-mode pinning control of complex networks
%J Kybernetika
%D 2018
%P 1011-1032
%V 54
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1011/
%R 10.14736/kyb-2018-5-1011
%G en
%F 10_14736_kyb_2018_5_1011
Suarez, Oscar J.; Vega, Carlos J.; Elvira-Ceja, Santiago; Sanchez, Edgar N.; Rodriguez, David I. Sliding-mode pinning control of complex networks. Kybernetika, Tome 54 (2018) no. 5, pp. 1011-1032. doi: 10.14736/kyb-2018-5-1011

[1] Barabási, A. L., Albert, R.: Emergence of scaling in random networks. Science 286 (1999), 5439, 509-512. | DOI | MR | Zbl

[2] Bhat, S. P., Bernstein, D. U.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 3, 751-766. | DOI | MR | Zbl

[3] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D. U.: Complex networks: Structure and dynamics. Phys. Rep. 424 (2006), 4, 175-308. | DOI | MR

[4] Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcation Chaos 9 (1999), 7, 1465-1466. | DOI | MR | Zbl

[5] Chen, G., Wang, X., Li, X.: Fundamentals of Complex Networks: Models, Structures and Dynamics. John Wiley and Sons, Singapore 2014.

[6] Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Systems I: Regular Papers 54 (2007), 6, 1317-1326 | DOI | MR

[7] Drakunov, S., Izosimov, D., Lukyanov, A., Utkin, V. A., Utkin, V. I.: The block control principle. 1. Automat. Remote Control 51 (1990), 5, 601-608. | MR

[8] Emelyanov, S. V.: Variable Structure Control Systems. Nouka, Moscow 1967. | MR

[9] Erdos, P., Rényi, A.: On the evolution of random graphs. Inst. Math. Hungar. Acad. Sci. 5 (1960), 1, 17-60. | MR

[10] Hu, G., Qu, Z.: Controlling spatiotemporal chaos in coupled map lattice systems. Phys. Rev. Lett. 72 (1994), 1, 68. | DOI

[11] Guldner, J., Utkin, V. I.: Tracking the gradient of artificial potential fields: Sliding mode control for mobile robots. Int. J. Control 63 (1996), 3, 417-432. | DOI | MR

[12] Guldner, J., Utkin, V. I.: The chattering problem in sliding mode systems. In: 14th Intenational Symposium of Mathematical Theory of Networks and Systems, (MTNS), Perpignan 2000.

[13] Khalil, H. K.: Noninear Systems. Prentice-Hall, New Jersey 2002.

[14] Khanzadeh, A., Pourgholi, M.: Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dynamics 88 (2017), 4, 2637-2649. | DOI | MR

[15] Krstic, M., Kanellakopoulos, I., Kokotovic, P. V.: Nonlinear and Adaptive Control Design. Wiley, 1995.

[16] Lee, H., Utkin, V. I.: Chattering suppression methods in sliding mode control systems. Ann. Rev. Control 31 (2007), 2, 179-188. | DOI

[17] Li, X., Chen, G.: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits and Systems I: Fundamental Theory Appl. 50 (2003), 11, 1381-1390. | DOI | MR

[18] Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Systems I: Regular Papers 51 (2004), 10, 2074-2087. | DOI | MR

[19] Lorenz, E.: Deterministic nonperiodic flow. J. Atmospher. Sci. 20 (1963), 2, 130-141. | DOI

[20] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Modell. 35 (2011), 3080-3091. | DOI | MR

[21] Roy, R., Murphy, T., Maier, T., Gills, Z., Hunt, E.: Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68 (1992), 9, 1259-1262. | DOI

[22] Sanchez, E. N., Rodriguez, D. I.: Inverse optimal pinning control for complex networks of chaotic systems. Int. Bifurcation Chaos 25, (2015), 02, 1550031. | DOI | MR

[23] Sira-Ramírez, H.: Sliding Mode Control: The Delta-Sigma Modulation Approach. Birkhauser, Basel 2015. | DOI | MR

[24] Sun, J., Shen, Y., Wang, X., Chen, J.: Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dynamics 76 (2014), 1, 383-397. | DOI | MR

[25] Su, H., Xiaofan, W.: Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning. Springer-Verlag, Berlin 2013. | MR

[26] Utkin, V. I., Lee, H.: Chattering problem in sliding mode control systems. In: Variable Structure Systems. VSS'06. International Workshop on Variable Structure Systems, (2006), pp. 346-350. | DOI

[27] Utkin, V. I.: Sliding Modes and their Application in Variable Structure Systems. Mir Publishers, Moscow 1978. | MR

[28] Utkin, V. I.: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 2013. | MR | Zbl

[29] Watts, D., Duncan, J., Strogatz, S.: Collective dynamics of 'small-world' networks. Nature 393 (1998), 6684, 440-442. | DOI | MR

[30] Wang, X., Cheng, G.: Pinning control of scale-free dynamical networks. Physica A: Statist. Mech. Appl. 310 (2002), 3, 521-531. | DOI | MR

[31] Vaidyanathan, S., Sampath, S.: Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. In: Advances in Digital Image Processing and Information Technology, Springer 2011, pp. 156-164. | DOI

[32] Yau, H.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos, Solitons Fractals 22 (2004), 341-347. | DOI | MR

[33] Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45 (2009), 2, 429-435. | DOI | MR | Zbl

[34] Zhang, M., Xu, M., Han, M.: Finite-time combination synchronization of uncertain complex networks by sliding mode control. Inform. Cybernet. Comput. Social Systems (ICCSS), (2017), 406-411. | DOI

Cité par Sources :