Keywords: complex network; pinning control; sliding mode; backstepping; trajectory tracking
@article{10_14736_kyb_2018_5_1011,
author = {Suarez, Oscar J. and Vega, Carlos J. and Elvira-Ceja, Santiago and Sanchez, Edgar N. and Rodriguez, David I.},
title = {Sliding-mode pinning control of complex networks},
journal = {Kybernetika},
pages = {1011--1032},
year = {2018},
volume = {54},
number = {5},
doi = {10.14736/kyb-2018-5-1011},
mrnumber = {3893133},
zbl = {07031757},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1011/}
}
TY - JOUR AU - Suarez, Oscar J. AU - Vega, Carlos J. AU - Elvira-Ceja, Santiago AU - Sanchez, Edgar N. AU - Rodriguez, David I. TI - Sliding-mode pinning control of complex networks JO - Kybernetika PY - 2018 SP - 1011 EP - 1032 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1011/ DO - 10.14736/kyb-2018-5-1011 LA - en ID - 10_14736_kyb_2018_5_1011 ER -
%0 Journal Article %A Suarez, Oscar J. %A Vega, Carlos J. %A Elvira-Ceja, Santiago %A Sanchez, Edgar N. %A Rodriguez, David I. %T Sliding-mode pinning control of complex networks %J Kybernetika %D 2018 %P 1011-1032 %V 54 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-1011/ %R 10.14736/kyb-2018-5-1011 %G en %F 10_14736_kyb_2018_5_1011
Suarez, Oscar J.; Vega, Carlos J.; Elvira-Ceja, Santiago; Sanchez, Edgar N.; Rodriguez, David I. Sliding-mode pinning control of complex networks. Kybernetika, Tome 54 (2018) no. 5, pp. 1011-1032. doi: 10.14736/kyb-2018-5-1011
[1] Barabási, A. L., Albert, R.: Emergence of scaling in random networks. Science 286 (1999), 5439, 509-512. | DOI | MR | Zbl
[2] Bhat, S. P., Bernstein, D. U.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 3, 751-766. | DOI | MR | Zbl
[3] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D. U.: Complex networks: Structure and dynamics. Phys. Rep. 424 (2006), 4, 175-308. | DOI | MR
[4] Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcation Chaos 9 (1999), 7, 1465-1466. | DOI | MR | Zbl
[5] Chen, G., Wang, X., Li, X.: Fundamentals of Complex Networks: Models, Structures and Dynamics. John Wiley and Sons, Singapore 2014.
[6] Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Systems I: Regular Papers 54 (2007), 6, 1317-1326 | DOI | MR
[7] Drakunov, S., Izosimov, D., Lukyanov, A., Utkin, V. A., Utkin, V. I.: The block control principle. 1. Automat. Remote Control 51 (1990), 5, 601-608. | MR
[8] Emelyanov, S. V.: Variable Structure Control Systems. Nouka, Moscow 1967. | MR
[9] Erdos, P., Rényi, A.: On the evolution of random graphs. Inst. Math. Hungar. Acad. Sci. 5 (1960), 1, 17-60. | MR
[10] Hu, G., Qu, Z.: Controlling spatiotemporal chaos in coupled map lattice systems. Phys. Rev. Lett. 72 (1994), 1, 68. | DOI
[11] Guldner, J., Utkin, V. I.: Tracking the gradient of artificial potential fields: Sliding mode control for mobile robots. Int. J. Control 63 (1996), 3, 417-432. | DOI | MR
[12] Guldner, J., Utkin, V. I.: The chattering problem in sliding mode systems. In: 14th Intenational Symposium of Mathematical Theory of Networks and Systems, (MTNS), Perpignan 2000.
[13] Khalil, H. K.: Noninear Systems. Prentice-Hall, New Jersey 2002.
[14] Khanzadeh, A., Pourgholi, M.: Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dynamics 88 (2017), 4, 2637-2649. | DOI | MR
[15] Krstic, M., Kanellakopoulos, I., Kokotovic, P. V.: Nonlinear and Adaptive Control Design. Wiley, 1995.
[16] Lee, H., Utkin, V. I.: Chattering suppression methods in sliding mode control systems. Ann. Rev. Control 31 (2007), 2, 179-188. | DOI
[17] Li, X., Chen, G.: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits and Systems I: Fundamental Theory Appl. 50 (2003), 11, 1381-1390. | DOI | MR
[18] Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Systems I: Regular Papers 51 (2004), 10, 2074-2087. | DOI | MR
[19] Lorenz, E.: Deterministic nonperiodic flow. J. Atmospher. Sci. 20 (1963), 2, 130-141. | DOI
[20] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Modell. 35 (2011), 3080-3091. | DOI | MR
[21] Roy, R., Murphy, T., Maier, T., Gills, Z., Hunt, E.: Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68 (1992), 9, 1259-1262. | DOI
[22] Sanchez, E. N., Rodriguez, D. I.: Inverse optimal pinning control for complex networks of chaotic systems. Int. Bifurcation Chaos 25, (2015), 02, 1550031. | DOI | MR
[23] Sira-Ramírez, H.: Sliding Mode Control: The Delta-Sigma Modulation Approach. Birkhauser, Basel 2015. | DOI | MR
[24] Sun, J., Shen, Y., Wang, X., Chen, J.: Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dynamics 76 (2014), 1, 383-397. | DOI | MR
[25] Su, H., Xiaofan, W.: Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning. Springer-Verlag, Berlin 2013. | MR
[26] Utkin, V. I., Lee, H.: Chattering problem in sliding mode control systems. In: Variable Structure Systems. VSS'06. International Workshop on Variable Structure Systems, (2006), pp. 346-350. | DOI
[27] Utkin, V. I.: Sliding Modes and their Application in Variable Structure Systems. Mir Publishers, Moscow 1978. | MR
[28] Utkin, V. I.: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 2013. | MR | Zbl
[29] Watts, D., Duncan, J., Strogatz, S.: Collective dynamics of 'small-world' networks. Nature 393 (1998), 6684, 440-442. | DOI | MR
[30] Wang, X., Cheng, G.: Pinning control of scale-free dynamical networks. Physica A: Statist. Mech. Appl. 310 (2002), 3, 521-531. | DOI | MR
[31] Vaidyanathan, S., Sampath, S.: Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. In: Advances in Digital Image Processing and Information Technology, Springer 2011, pp. 156-164. | DOI
[32] Yau, H.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos, Solitons Fractals 22 (2004), 341-347. | DOI | MR
[33] Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45 (2009), 2, 429-435. | DOI | MR | Zbl
[34] Zhang, M., Xu, M., Han, M.: Finite-time combination synchronization of uncertain complex networks by sliding mode control. Inform. Cybernet. Comput. Social Systems (ICCSS), (2017), 406-411. | DOI
Cité par Sources :