Keywords: contrast measures; image enhancement; enhancement quality measures; medical image enhancement
@article{10_14736_kyb_2018_5_0978,
author = {Reme\v{s}, V\'aclav and Haindl, Michal},
title = {Region of interest contrast measures},
journal = {Kybernetika},
pages = {978--990},
year = {2018},
volume = {54},
number = {5},
doi = {10.14736/kyb-2018-5-0978},
mrnumber = {3893131},
zbl = {07031755},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0978/}
}
Remeš, Václav; Haindl, Michal. Region of interest contrast measures. Kybernetika, Tome 54 (2018) no. 5, pp. 978-990. doi: 10.14736/kyb-2018-5-0978
[1] Agaian, S. S., Panetta, K., Grigoryan, A. M.: Transform-based image enhancement algorithms with performance measure. IEEE Trans. Image Process. 10 (2001), 3, 367-382. | DOI
[2] Agaian, S. S., Silver, B., Panetta, K. A.: Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans. Image Process. 16 (2007), 3, 741-758. | DOI | MR
[3] Bhateja, V., Misra, M., Urooj, S.: Non-linear polynomial filters for edge enhancement of mammogram lesions. Comp. Meth. Programs Biomedicine 129 (2016), 125-134. | DOI
[4] Burkhardt, D. A., Gottesman, J., Kersten, D., Legge, G. E.: Symmetry and constancy in the perception of negative and positive luminance contrast. JOSA A 1 (1984), 3, 309-316. | DOI
[5] Chang, C.-M., Laine, A.: Coherence of multiscale features for enhancement of digital mammograms. IEEE Trans. Inform. Technol. Biomedicine 3 (1999), 1, 32-46. | DOI
[6] Dippel, S., Stahl, M., Wiemker, R., Blaffert, T.: Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform. IEEE Trans. Medical Imaging 21 (2002), 4, 343-353. | DOI
[7] Erdem, C. E., Sankur, B., Tekalp, A. M.: Performance measures for video object segmentation and tracking. IEEE Trans. Image Process. 13 (2004), 7, 937-951. | DOI
[8] Grim, J., Somol, P., Haindl, M., Daneš, J.: Computer-aided evaluation of screening mammograms based on local texture models. IEEE Trans. Image Process. 18 (2009), 4, 765-773. | DOI | MR
[9] Haun, A., Peli, E.: Perceived contrast in complex images. J. Vision 13 (2013), 3, 2013. | DOI
[10] King-Smith, P. E., Kulikowski, J.: Pattern and flicker detection analysed by subthreshold summation. J. Physiology 249 (1975), 3, 519. | DOI
[11] Levine, M. D., Nazif, A. M.: Dynamic measurement of computer generated image segmentations. IEEE Trans. Pattern Analysis Machine Intell. 7 (1985), 155-164. | DOI
[12] Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M., Caselli, F.: Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans Instrument. Measurement 57 (2008), 7, 1422-1430. | DOI
[13] Michelson, A. A.: Studies in Optics. University of Chicago Press, Chicago 1927.
[14] Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., Cardoso, J. S.: Inbreast: toward a full-field digital mammographic database. Academic Radiology 19 (2012), 2, 236-248. | DOI
[15] Panetta, K., Zhou, Y., Agaian, S., Jia, H.: Nonlinear unsharp masking for mammogram enhancement. IEEE Trans. Inform. Technol. Biomedicine 15 (2011), 6, 918-928. | DOI
[16] Peli, E.: Contrast in complex images. JOSA A 7 (1990), 10, 2032-2040. | DOI
[17] Qi, H., Diakides, N. A.: Thermal infrared imaging in early breast cancer detection - a survey of recent research. In: Proc. 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, IEEE 2003, pp. 1109-1112. | DOI
[18] Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: A wavelet-based spatially adaptive method for mammographic contrast enhancement. Physics Medicine Biology 48 (2003), 6, 787. | DOI
[19] Salvado, J., Roque, B.: Detection of calcifications in digital mammograms using wavelet analysis and contrast enhancement. In: IEEE International Workshop on Intelligent Signal Processing 2005, IEEE 2005, pp. 200-205. | DOI
[20] Simone, G., Pedersen, M., Hardeberg, J. Y.: Measuring perceptual contrast in digital images. J. Visual Commun. Image Representation 23 (2012), 3, 491-506. | DOI
[21] Tadmor, Y., Tolhurst, D.: Calculating the contrasts that retinal ganglion cells and \{LGN\} neurones encounter in natural scenes. Vision Research 40 (2000), 22, 3145-3157. | DOI
[22] Tang, J., Liu, X., Sun, Q.: A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms. IEEE J. Selected Topics Signal Process. 3 (2009), 1, 74-80. | DOI
[23] Taylor, P., Champness, J., Given-Wilson, R., Johnston, K., Potts, H.: Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography. Health Technol. Assessment 9 (2005), 6. | DOI
[24] Thangavel, K., Karnan, M., Sivakumar, R., Mohideen, A.: Cad system for preprocessing and enhancement of digital mammograms. Graphics, Vision Image Process. xx (2007), 55-60.
[25] Tweed, T., Miguet, S.: Automatic detection of regions of interest in mammographies based on a combined analysis of texture and histogram. In: Proc. 16th International Conference on Pattern Recognition 2002, Vol. 2, Los Alamitos 2002. IEEE Computer Soc., pp. 448-452. | DOI
[26] Wang, H., Li, J.-B., Wu, L., Gao, H.: Mammography visual enhancement in cad-based breast cancer diagnosis. Clinical Imaging 37 (2013), 273-282. | DOI
[27] Weber, E. H.: The Sense of Touch. Academic Press, 1978.
[28] Whittle, P.: Increments and decrements: Luminance discrimination. Vision Res. 26 (1986), 10, 1677-1691. | DOI
[29] Yan, Z., Zhang, Y., Liu, B., Zheng, J., Lu, L., Xie, Y., Liang, Z., Li, J.: Extracting hidden visual information from mammography images using conjugate image enhancement software. In: IEEE International Conference on Information Acquisition, IEEE Engineering in Medicine and Biology Society, 2005, pp. 4775-4778. | DOI
Cité par Sources :