Keywords: complex delayed system; uncertain; stabilization; intermittent control; switched
@article{10_14736_kyb_2018_5_0937,
author = {Zheng, Song},
title = {Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods},
journal = {Kybernetika},
pages = {937--957},
year = {2018},
volume = {54},
number = {5},
doi = {10.14736/kyb-2018-5-0937},
mrnumber = {3893129},
zbl = {07031753},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0937/}
}
TY - JOUR AU - Zheng, Song TI - Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods JO - Kybernetika PY - 2018 SP - 937 EP - 957 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0937/ DO - 10.14736/kyb-2018-5-0937 LA - en ID - 10_14736_kyb_2018_5_0937 ER -
%0 Journal Article %A Zheng, Song %T Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods %J Kybernetika %D 2018 %P 937-957 %V 54 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0937/ %R 10.14736/kyb-2018-5-0937 %G en %F 10_14736_kyb_2018_5_0937
Zheng, Song. Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods. Kybernetika, Tome 54 (2018) no. 5, pp. 937-957. doi: 10.14736/kyb-2018-5-0937
[1] Arefi, M. M.: Adaptive robust stabilization of Rossler system with time-varying mismatched parameters via scalar input. J. Comput. Nonlinear Dynamics 11 (2016), 041024-6. | DOI
[2] Cai, S., Zhou, P., Liu, Z.: Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control. Chaos 24 (2014), 033102. | DOI | MR
[3] Carr, T. W., Schwartz, I. B.: Controlling the unstable steady state in a multimode laser. Phys. Rev. E 51 (1995), 5109-5111. | DOI
[4] Fang, T., Sun, J.: Stability analysis of complex-valued impulsive system. IET Control Theory Appl. 7 (2013), 1152-1159. | DOI | MR
[5] Fang, T., Sun, J.: Stability of complex-valued impulsive and switching system and application to the Lü system. Nonlinear Analysis: Hybrid Systems 14 (2014), 38-46. | DOI | MR
[6] Fowler, A. C., Gibbon, J. D., McGuinness, M. J.: The complex Lorenz equations. Physica D 4 (1982), 139-163. | DOI | MR | Zbl
[7] Han, Q. L.: New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control. Physics Lett. A 360 (2007), 563-569. | DOI | Zbl
[8] Huang, T. W., Li, C. D., Liu, X.: Synchronization of chaotic systems with delay using intermittent linear state feedback. Chaos 18 (2008), 033122. | DOI | MR
[9] Li, C. D., Liao, X. F., Huang, T. W.: Exponential stabilization of chaotic systems with delay by periodically intermittent control. Chaos 17 (2007), 013103. | DOI | MR
[10] Li, N., Sun, H., Zhang, Q: Exponential synchronization of united complex dynamical networks with multi-links via adaptive periodically intermittent control. IET Control Theory Appl. 159 (2013), 1725-1736. | DOI | MR
[11] Liang, Y., Wang, X.: Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods. Physica A 395 (2014), 434-444. | DOI | MR
[12] Liu, X., Chen, T.: Synchronization of complex networks via aperiodically intermittent pinning control. IEEE Trans. Automat. Control 60 (2015), 3316-3321. | DOI | MR
[13] Liu, X., Chen, T.: Synchronization of nonlinear coupled networks via a periodically intermittent pinning control. IEEE Trans. Neural Networks Learning Systems 26 (2015), 113-126. | DOI | MR
[14] Lu, J., Ho, D. W. C., Cao, J.: A unified synchronization criterion for impulsive dynamical networks. Automatica 46 (2010), 1215-1221. | DOI | MR
[15] Luo, C., Wang, X.: Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dynamics 71 (2013), 241-257. | DOI | MR
[16] Mahmoud, E. E.: Dynamics and synchronization of new hyperchaotic complex Lorenz system. Math. Computer Modelling 55 (2012), 1951-1962. | DOI | MR
[17] Mahmoud, G. M., Mahmoud, E. E., Arafa, A. A.: On modified time delay hyperchaotic complex Lü system. Nonlinear Dynamics 80 (2015), 855-869. | DOI | MR
[18] Mahmoud, G. M., Bountis, T., Mahmoud, E. E.: Active control and global synchronization for complex Chen and Lü systems. Int. J. Bifurcation Chaos 17 (2007), 4295-4308. | DOI | MR
[19] Morgül, Ö.: On the stability of delayed feedback controllers. Phys. Lett. A 314 (2003), 278-285. | DOI | MR
[20] Ning, C. Z., Haken, H.: Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations. Phys. Rev. A 41 (1990), 3826-3837. | DOI
[21] Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64 (1990), 1196. | DOI | MR | Zbl
[22] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. | DOI | MR | Zbl
[23] Qiu, J., Cheng, L., X, Chen, Lu, J., He, H.: Semi-periodically intermittent control for synchronization of switched complex networks:a mode-dependent average dwell time approach. Nonlinear Dynamics {\mi83} (2016), 1757-1771. | DOI | MR
[24] Starrett, J.: Control of chaos by occasional bang-bang. Phys. Rev. E 67 (2003), 036203. | DOI
[25] Sun, W., Wang, S., Wang, G., Wu, Y.: Lag synchronization via pinning control between two coupled networks. Nonlinear Dynamics 79 (2015), 2659-2666. | DOI | MR
[26] Wang, X., He, Y.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372 (2008), 435-441. | DOI
[27] Xia, W., Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19 (2009), 013120. | DOI | MR
[28] Yang, Z., Xu, D.: Stability analysis and design of impulsive control systems with time delay. IEEE Trans. Automat. Control 52 (2007), 1448-1454. | DOI | MR
[29] Zhang, D. W., Han, Q. L., Jia, X. C.: Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by nondelayed output feedback controllers. IEEE Trans. Cybernet. 45 (2015), 1511-1524. | DOI | MR
[30] Zhang, D. W., Han, Q. L., Jia, X. C.: Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme. Fuzzy Sets Systems 273 (2015), 26-48. | DOI | MR
[31] Zheng, S.: Adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling. Nonlinear Dynamics 67 (2012), 2621-2630. | DOI | MR | Zbl
[32] Zheng, S.: Parameter identification and adaptive impulsive synchronization of uncertain complex-variable chaotic systems. Nonlinear Dynamics 74 (2013), 957-967. | DOI | MR | Zbl
[33] Zheng, S.: Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays. ISA Trans. 58 (2015), 20-26. | DOI
[34] Zheng, S.: Synchronization analysis of time delay complex-variable chaotic systems with discontinuous coupling. J. Franklin Inst. 353 (2016), 1460-1477. | DOI | MR
[35] Zheng, S.: Further Results on the impulsive synchronization of uncertain complex-variable chaotic delayed systems. Complexity 21 (2016), 131-142. | DOI | MR
[36] Zochowski, M.: Intermittent dynamical control. Physica D 145 (2000), 181-190. | DOI
Cité par Sources :