Keywords: high-dimensional inference; covariance testing; $U$-statistics; non-normality
@article{10_14736_kyb_2018_5_0908,
author = {Ahmad, M. Rauf},
title = {A homogeneity test of large dimensional covariance matrices under non-normality},
journal = {Kybernetika},
pages = {908--920},
year = {2018},
volume = {54},
number = {5},
doi = {10.14736/kyb-2018-5-0908},
mrnumber = {3893127},
zbl = {07031751},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0908/}
}
TY - JOUR AU - Ahmad, M. Rauf TI - A homogeneity test of large dimensional covariance matrices under non-normality JO - Kybernetika PY - 2018 SP - 908 EP - 920 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0908/ DO - 10.14736/kyb-2018-5-0908 LA - en ID - 10_14736_kyb_2018_5_0908 ER -
Ahmad, M. Rauf. A homogeneity test of large dimensional covariance matrices under non-normality. Kybernetika, Tome 54 (2018) no. 5, pp. 908-920. doi: 10.14736/kyb-2018-5-0908
[1] Ahmad, M. R.: Location-invariant multi-sample $U$-tests for covariance matrices with large dimension. Scand. J. Stat. 44 (2017b), 500-523. | DOI | MR
[2] Ahmad, M. R.: Testing homogeneity of several covariance matrices and multi-sample sphericity for high-dimensional data under non-normality. Comm. Stat. Theory Methods 46 (2017a), 3738-3753. | DOI | MR
[3] Ahmad, M. R.: On testing sphericity and identity of a covariance matrix with large dimensions. Math. Meth. Stat. 25 (2016), 121-132. | DOI | MR
[4] Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Third edition. Wiley, NY 2003. | MR
[5] Aoshima, M., Yata, K.: Two-stage procedures for high-dimensional data. Seq. An. 30 (2011), 356-399. | DOI | MR
[6] Cai, T., Liu, W., Xia, Y.: Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. J. Amer. Statist. Assoc. 108 (2013), 265-277. | DOI | MR
[7] Fujikoshi, Y., Ulyanov, V. V., Shimizu, R.: Multivariate statistics: High-dimensional and large-sample approximations. Wiley, NY 2010. | MR
[8] Hájek, J., Šidák, Z., Sen, P. K.: Theory of Rank Tests. Academic Press, SD 1999. | MR | Zbl
[9] Kim, T. Y., Luo, Z-M., Kim, C.: The central limit theorem for degenerate variable $U$-statistics under dependence. J. Nonparam. Stat. 23 (2011), 683-699. | DOI | MR
[10] Koroljuk, V. S., Borovskich, Y. V.: Theory of $U$-statistics. Kluwer Academic Press, Dordrecht 1994. | DOI | MR
[11] Lee, A. J.: $U$-statistics: Theory and Practice. CRC Press, Boca Raton 1990.
[12] Lehmann, E. L.: Elements of Large-sample Theory. Springer, NY 1999. | DOI | MR
[13] Li, J., Chen, S. X.: Two sample tests for high-dimensional covariance matrices. Ann. Stat. 40 (2012), 908-940. | DOI | MR
[14] Liu, B., Xu, L., Zheng, S., Tian, G-L.: A new test for the proportionality of two large-dimensional covariance matrices. J. Multiv. An. 131 (2014), 293-308. | DOI | MR
[15] Mikosch, T.: Weak invariance principles for weighted $U$-statistics. J. Theoret. Prob. 7 (1991), 147-173. | DOI | MR
[16] Mikosch, T.: A weak invariance principle for weighted $U$-statistics with varying kernels. J. Multiv. An. 47 (1993), 82-102. | DOI | MR
[17] Muirhead, R. J.: Aspects of Multivariate Statistical Theory. Wiley, NY 2005 | DOI | MR
[18] Pinheiro, A., Sen, K., Pinheiro, H. P.: Decomposibility of high-dimensional diversity measures: Quasi-$U$-statistics, martigales, and nonstandard asymptotics. J. Multiv. An. 100 (2009), 1645-1656. | DOI | MR
[19] Qiu, Y., Chen, S. X.: Test for bandedness of high-dimensional covariance matrices and bandwidth estimation. Ann. Stat. 40 (2012) 1285-1314. | DOI | MR
[20] Schott, J. R.: A test for the equality of covariance matrices when the dimension is large relative to the sample size. Computat. Statist. Data Analysis 51 (2007), 6535-6542. | DOI | MR
[21] Seber, G. A. F.: Multivariate Observations. Wiley, NY 2004. | DOI | MR
[22] Sen, P. K.: Robust statistical inference for high-dimensional data models with applications in genomics. Aust. J. Stat. 35 (2006), 197-214.
[23] Serfling, R. J.: Approximation Theorems of Mathematical Statistics. Wiley, Weinheim 1980. | DOI | MR
[24] Srivastava, M. S., Yanagihara, H.: Testing the equality of several covariance matrices with fewer observations than the dimension. J. Multiv. An. 101, 1319-1329. | DOI | MR
[25] Vaart, A. W. van der: Asymptotic Statistics. Cambridge University Press, 1998. | DOI | MR
[26] Zhong, P-S., Chen, S. X.: Tests for high-dimensional regression coefficients with factorial designs. J. Amer. Statist. Assoc. 106 (2011), 260-274. | DOI | MR
Cité par Sources :