A note on weak solutions to stochastic differential equations
Kybernetika, Tome 54 (2018) no. 5, pp. 888-907.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner.
DOI : 10.14736/kyb-2018-5-0888
Classification : 60H10
Keywords: stochastic differential equations; continuous coefficients; weak solutions
@article{10_14736_kyb_2018_5_0888,
     author = {Ondrej\'at, Martin and Seidler, Jan},
     title = {A note on weak solutions to stochastic differential equations},
     journal = {Kybernetika},
     pages = {888--907},
     publisher = {mathdoc},
     volume = {54},
     number = {5},
     year = {2018},
     doi = {10.14736/kyb-2018-5-0888},
     mrnumber = {3893126},
     zbl = {07031750},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/}
}
TY  - JOUR
AU  - Ondreját, Martin
AU  - Seidler, Jan
TI  - A note on weak solutions to stochastic differential equations
JO  - Kybernetika
PY  - 2018
SP  - 888
EP  - 907
VL  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/
DO  - 10.14736/kyb-2018-5-0888
LA  - en
ID  - 10_14736_kyb_2018_5_0888
ER  - 
%0 Journal Article
%A Ondreját, Martin
%A Seidler, Jan
%T A note on weak solutions to stochastic differential equations
%J Kybernetika
%D 2018
%P 888-907
%V 54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/
%R 10.14736/kyb-2018-5-0888
%G en
%F 10_14736_kyb_2018_5_0888
Ondreját, Martin; Seidler, Jan. A note on weak solutions to stochastic differential equations. Kybernetika, Tome 54 (2018) no. 5, pp. 888-907. doi : 10.14736/kyb-2018-5-0888. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/

Cité par Sources :