A note on weak solutions to stochastic differential equations
Kybernetika, Tome 54 (2018) no. 5, pp. 888-907
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner.
DOI :
10.14736/kyb-2018-5-0888
Classification :
60H10
Keywords: stochastic differential equations; continuous coefficients; weak solutions
Keywords: stochastic differential equations; continuous coefficients; weak solutions
@article{10_14736_kyb_2018_5_0888,
author = {Ondrej\'at, Martin and Seidler, Jan},
title = {A note on weak solutions to stochastic differential equations},
journal = {Kybernetika},
pages = {888--907},
publisher = {mathdoc},
volume = {54},
number = {5},
year = {2018},
doi = {10.14736/kyb-2018-5-0888},
mrnumber = {3893126},
zbl = {07031750},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/}
}
TY - JOUR AU - Ondreját, Martin AU - Seidler, Jan TI - A note on weak solutions to stochastic differential equations JO - Kybernetika PY - 2018 SP - 888 EP - 907 VL - 54 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/ DO - 10.14736/kyb-2018-5-0888 LA - en ID - 10_14736_kyb_2018_5_0888 ER -
%0 Journal Article %A Ondreját, Martin %A Seidler, Jan %T A note on weak solutions to stochastic differential equations %J Kybernetika %D 2018 %P 888-907 %V 54 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/ %R 10.14736/kyb-2018-5-0888 %G en %F 10_14736_kyb_2018_5_0888
Ondreját, Martin; Seidler, Jan. A note on weak solutions to stochastic differential equations. Kybernetika, Tome 54 (2018) no. 5, pp. 888-907. doi: 10.14736/kyb-2018-5-0888
Cité par Sources :