Keywords: stochastic differential equations; continuous coefficients; weak solutions
@article{10_14736_kyb_2018_5_0888,
author = {Ondrej\'at, Martin and Seidler, Jan},
title = {A note on weak solutions to stochastic differential equations},
journal = {Kybernetika},
pages = {888--907},
year = {2018},
volume = {54},
number = {5},
doi = {10.14736/kyb-2018-5-0888},
mrnumber = {3893126},
zbl = {07031750},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/}
}
TY - JOUR AU - Ondreját, Martin AU - Seidler, Jan TI - A note on weak solutions to stochastic differential equations JO - Kybernetika PY - 2018 SP - 888 EP - 907 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/ DO - 10.14736/kyb-2018-5-0888 LA - en ID - 10_14736_kyb_2018_5_0888 ER -
Ondreját, Martin; Seidler, Jan. A note on weak solutions to stochastic differential equations. Kybernetika, Tome 54 (2018) no. 5, pp. 888-907. doi: 10.14736/kyb-2018-5-0888
[1] Bensoussan, A.: Stochastic Navier-Stokes equations. Acta Appl. Math. 38 (1995), 267-304. | DOI | MR
[2] Billingsley, P.: Convergence of Probability Measures. Second edition. Wiley, New York 1999. | DOI | MR
[3] Bogachev, V. I.: Measure Theory, Vol. II. Springer, Berlin 2007. | DOI | MR
[4] Brzeźniak, Z., Ondreját, M., Seidler, J.: Invariant measures for stochastic nonlinear beam and wave equations. J. Differential Equations 260 (2016), 4157-4179. | DOI | MR
[5] Cherny, A.: Some particular problems of martingale theory. In: From Stochastic Calculus to Mathematical Finance, Springer, Berlin 2006, pp. 109-124. | DOI | MR
[6] Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Phys. D 240 (2011), 1123-1144. | DOI | MR
[7] Dudley, R. M.: Real Analysis and Probability. Cambridge University Press, Cambridge 2002. | DOI | MR | Zbl
[8] Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations. Stoch. Anal. Appl. 30 (2012), 100-121. | DOI | MR
[9] Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations II. Stoch. Anal. Appl. 31 (2013), 663-670. | DOI | MR
[10] Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô's stochastic equations via approximations. Probab. Theory Related Fields 105 (1996), 143-158. | DOI | MR
[11] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam 1981. | DOI | MR
[12] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus. Springer, New York 1988. | DOI | MR
[13] Kurtz, T. G., Protter, P. E.: Weak convergence of stochastic integrals and differential equations. In: Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math. 1627, Springer, Berlin 1996, pp. 1-41. | DOI | MR
[14] Skorokhod, A. V.: On existence and uniqueness of solutions to stochastic differential equations (in Russian). Sibirsk. Mat. Ž. 2 (1961), 129-137. | MR
[15] Strock, D. W., Varadhan, S. R. S.: Multidimensional Diffusion Processes. Springer, Berlin 1979. | MR
[16] Taheri, A.: Function Spaces and Partial Differential Equations, Vol. 1: Classical Analysis. Oxford University Press, Oxford 2015. | DOI | MR
[17] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam 1978. | DOI | MR
Cité par Sources :