A note on weak solutions to stochastic differential equations
Kybernetika, Tome 54 (2018) no. 5, pp. 888-907
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner.
We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner.
DOI : 10.14736/kyb-2018-5-0888
Classification : 60H10
Keywords: stochastic differential equations; continuous coefficients; weak solutions
@article{10_14736_kyb_2018_5_0888,
     author = {Ondrej\'at, Martin and Seidler, Jan},
     title = {A note on weak solutions to stochastic differential equations},
     journal = {Kybernetika},
     pages = {888--907},
     year = {2018},
     volume = {54},
     number = {5},
     doi = {10.14736/kyb-2018-5-0888},
     mrnumber = {3893126},
     zbl = {07031750},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/}
}
TY  - JOUR
AU  - Ondreját, Martin
AU  - Seidler, Jan
TI  - A note on weak solutions to stochastic differential equations
JO  - Kybernetika
PY  - 2018
SP  - 888
EP  - 907
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/
DO  - 10.14736/kyb-2018-5-0888
LA  - en
ID  - 10_14736_kyb_2018_5_0888
ER  - 
%0 Journal Article
%A Ondreját, Martin
%A Seidler, Jan
%T A note on weak solutions to stochastic differential equations
%J Kybernetika
%D 2018
%P 888-907
%V 54
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0888/
%R 10.14736/kyb-2018-5-0888
%G en
%F 10_14736_kyb_2018_5_0888
Ondreját, Martin; Seidler, Jan. A note on weak solutions to stochastic differential equations. Kybernetika, Tome 54 (2018) no. 5, pp. 888-907. doi: 10.14736/kyb-2018-5-0888

[1] Bensoussan, A.: Stochastic Navier-Stokes equations. Acta Appl. Math. 38 (1995), 267-304. | DOI | MR

[2] Billingsley, P.: Convergence of Probability Measures. Second edition. Wiley, New York 1999. | DOI | MR

[3] Bogachev, V. I.: Measure Theory, Vol. II. Springer, Berlin 2007. | DOI | MR

[4] Brzeźniak, Z., Ondreját, M., Seidler, J.: Invariant measures for stochastic nonlinear beam and wave equations. J. Differential Equations 260 (2016), 4157-4179. | DOI | MR

[5] Cherny, A.: Some particular problems of martingale theory. In: From Stochastic Calculus to Mathematical Finance, Springer, Berlin 2006, pp. 109-124. | DOI | MR

[6] Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Phys. D 240 (2011), 1123-1144. | DOI | MR

[7] Dudley, R. M.: Real Analysis and Probability. Cambridge University Press, Cambridge 2002. | DOI | MR | Zbl

[8] Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations. Stoch. Anal. Appl. 30 (2012), 100-121. | DOI | MR

[9] Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations II. Stoch. Anal. Appl. 31 (2013), 663-670. | DOI | MR

[10] Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô's stochastic equations via approximations. Probab. Theory Related Fields 105 (1996), 143-158. | DOI | MR

[11] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam 1981. | DOI | MR

[12] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus. Springer, New York 1988. | DOI | MR

[13] Kurtz, T. G., Protter, P. E.: Weak convergence of stochastic integrals and differential equations. In: Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math. 1627, Springer, Berlin 1996, pp. 1-41. | DOI | MR

[14] Skorokhod, A. V.: On existence and uniqueness of solutions to stochastic differential equations (in Russian). Sibirsk. Mat. Ž. 2 (1961), 129-137. | MR

[15] Strock, D. W., Varadhan, S. R. S.: Multidimensional Diffusion Processes. Springer, Berlin 1979. | MR

[16] Taheri, A.: Function Spaces and Partial Differential Equations, Vol. 1: Classical Analysis. Oxford University Press, Oxford 2015. | DOI | MR

[17] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam 1978. | DOI | MR

Cité par Sources :