Keywords: covariance matrix; higher-order statistics; adaptive; nonlinear
@article{10_14736_kyb_2018_5_0865,
author = {Magiera, Wladyslaw and Libal, Urszula and Wielgus, Agnieszka},
title = {Efficient measurement of higher-order statistics of stochastic processes},
journal = {Kybernetika},
pages = {865--887},
year = {2018},
volume = {54},
number = {5},
doi = {10.14736/kyb-2018-5-0865},
mrnumber = {3893125},
zbl = {07031749},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0865/}
}
TY - JOUR AU - Magiera, Wladyslaw AU - Libal, Urszula AU - Wielgus, Agnieszka TI - Efficient measurement of higher-order statistics of stochastic processes JO - Kybernetika PY - 2018 SP - 865 EP - 887 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0865/ DO - 10.14736/kyb-2018-5-0865 LA - en ID - 10_14736_kyb_2018_5_0865 ER -
%0 Journal Article %A Magiera, Wladyslaw %A Libal, Urszula %A Wielgus, Agnieszka %T Efficient measurement of higher-order statistics of stochastic processes %J Kybernetika %D 2018 %P 865-887 %V 54 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0865/ %R 10.14736/kyb-2018-5-0865 %G en %F 10_14736_kyb_2018_5_0865
Magiera, Wladyslaw; Libal, Urszula; Wielgus, Agnieszka. Efficient measurement of higher-order statistics of stochastic processes. Kybernetika, Tome 54 (2018) no. 5, pp. 865-887. doi: 10.14736/kyb-2018-5-0865
[1] Dewilde, P.: Stochastic modelling with orthogonal filters. In: Outils et modeles mathematiques pour l'automatique, l'analyse de systemes et le traitement du signal, CNRS (ed.), Paris 1982, pp. 331-398. | MR
[2] Lee, D. T. L., Morf, M., Friedlander, B.: Recursive least-squares ladder estimation algorithms. IEEE Trans. Circuit Systems CAS 28 (1981), 467-481. | DOI | MR
[3] Jurečková, J.: Regression quantiles and trimmed least squares estimator under a general design. Kybernetika 20 (1984), 5, 345-357. | MR | Zbl
[4] Levinson, N.: The Wiener RMS error criterion in filter design and prediction. J. Math. Physics 25 (1947), 261-278. | DOI | MR
[5] Mandl, P., Duncan, T. E., Pasik-Duncan, B.: On the consistency of a least squares identification procedure. Kybernetika 24 (1988), 5, 340-346. | MR
[6] Mendel, J. M.: Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc. IEEE 79 (1991), 3, 278-305. | DOI
[7] Pázman, A.: Probability distribution of the multivariate nonlinear least squares estimates. Kybernetika 20 (1984), 3, 209-230. | MR
[8] Pronzato, L., Pázman, A.: Second-order approximation of the entropy in nonlinear least-squares estimation. Kybernetika 30 (1994), 2, 187-198. | MR
[9] Schur, I.: Methods in 0perator Theory and Signal Processing. Operator Theory: Advances and Applications 18, Springer-Verlag 1086. | DOI
[10] Stellakis, H. M., Manolakos, E. M.: Adaptive computation of higher order moments and its systolic realization. Int. J. Adaptive Control Signal Process. 10 (1996), 283-302. | DOI
[11] Wiener, N.: Nonlinear Problems in Random Theory. MIT Press, 1958. | MR
[12] Zarzycki, J.: Multidimensional nonlinear Schur parametrization of non-gaussian stochastic signals - Part one: Statement of the problem. MDSSP J. 15 (2004), 3, 217-241. | DOI | MR
Cité par Sources :