Efficient measurement of higher-order statistics of stochastic processes
Kybernetika, Tome 54 (2018) no. 5, pp. 865-887
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is devoted to analysis of block multi-indexed higher-order covariance matrices, which can be used for the least-squares estimation problem. The formulation of linear and nonlinear least squares estimation problems is proposed, showing that their statements and solutions lead to generalized `normal equations', employing covariance matrices of the underlying processes. Then, we provide a class of efficient algorithms to estimate higher-order statistics (generalized multi-indexed covariance matrices), which are necessary taking in mind practical aspects of the nonlinear treatment of the least-squares estimation problem. The algorithms are examined for different higher-order and non-Gaussian processes (time-series) and an impact of signal properties on covariance matrices is analysed.
This paper is devoted to analysis of block multi-indexed higher-order covariance matrices, which can be used for the least-squares estimation problem. The formulation of linear and nonlinear least squares estimation problems is proposed, showing that their statements and solutions lead to generalized `normal equations', employing covariance matrices of the underlying processes. Then, we provide a class of efficient algorithms to estimate higher-order statistics (generalized multi-indexed covariance matrices), which are necessary taking in mind practical aspects of the nonlinear treatment of the least-squares estimation problem. The algorithms are examined for different higher-order and non-Gaussian processes (time-series) and an impact of signal properties on covariance matrices is analysed.
DOI : 10.14736/kyb-2018-5-0865
Classification : 15B05, 15B51, 60G10, 60G15, 93E24
Keywords: covariance matrix; higher-order statistics; adaptive; nonlinear
@article{10_14736_kyb_2018_5_0865,
     author = {Magiera, Wladyslaw and Libal, Urszula and Wielgus, Agnieszka},
     title = {Efficient measurement of higher-order statistics of stochastic processes},
     journal = {Kybernetika},
     pages = {865--887},
     year = {2018},
     volume = {54},
     number = {5},
     doi = {10.14736/kyb-2018-5-0865},
     mrnumber = {3893125},
     zbl = {07031749},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0865/}
}
TY  - JOUR
AU  - Magiera, Wladyslaw
AU  - Libal, Urszula
AU  - Wielgus, Agnieszka
TI  - Efficient measurement of higher-order statistics of stochastic processes
JO  - Kybernetika
PY  - 2018
SP  - 865
EP  - 887
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0865/
DO  - 10.14736/kyb-2018-5-0865
LA  - en
ID  - 10_14736_kyb_2018_5_0865
ER  - 
%0 Journal Article
%A Magiera, Wladyslaw
%A Libal, Urszula
%A Wielgus, Agnieszka
%T Efficient measurement of higher-order statistics of stochastic processes
%J Kybernetika
%D 2018
%P 865-887
%V 54
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-5-0865/
%R 10.14736/kyb-2018-5-0865
%G en
%F 10_14736_kyb_2018_5_0865
Magiera, Wladyslaw; Libal, Urszula; Wielgus, Agnieszka. Efficient measurement of higher-order statistics of stochastic processes. Kybernetika, Tome 54 (2018) no. 5, pp. 865-887. doi: 10.14736/kyb-2018-5-0865

[1] Dewilde, P.: Stochastic modelling with orthogonal filters. In: Outils et modeles mathematiques pour l'automatique, l'analyse de systemes et le traitement du signal, CNRS (ed.), Paris 1982, pp. 331-398. | MR

[2] Lee, D. T. L., Morf, M., Friedlander, B.: Recursive least-squares ladder estimation algorithms. IEEE Trans. Circuit Systems CAS 28 (1981), 467-481. | DOI | MR

[3] Jurečková, J.: Regression quantiles and trimmed least squares estimator under a general design. Kybernetika 20 (1984), 5, 345-357. | MR | Zbl

[4] Levinson, N.: The Wiener RMS error criterion in filter design and prediction. J. Math. Physics 25 (1947), 261-278. | DOI | MR

[5] Mandl, P., Duncan, T. E., Pasik-Duncan, B.: On the consistency of a least squares identification procedure. Kybernetika 24 (1988), 5, 340-346. | MR

[6] Mendel, J. M.: Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc. IEEE 79 (1991), 3, 278-305. | DOI

[7] Pázman, A.: Probability distribution of the multivariate nonlinear least squares estimates. Kybernetika 20 (1984), 3, 209-230. | MR

[8] Pronzato, L., Pázman, A.: Second-order approximation of the entropy in nonlinear least-squares estimation. Kybernetika 30 (1994), 2, 187-198. | MR

[9] Schur, I.: Methods in 0perator Theory and Signal Processing. Operator Theory: Advances and Applications 18, Springer-Verlag 1086. | DOI

[10] Stellakis, H. M., Manolakos, E. M.: Adaptive computation of higher order moments and its systolic realization. Int. J. Adaptive Control Signal Process. 10 (1996), 283-302. | DOI

[11] Wiener, N.: Nonlinear Problems in Random Theory. MIT Press, 1958. | MR

[12] Zarzycki, J.: Multidimensional nonlinear Schur parametrization of non-gaussian stochastic signals - Part one: Statement of the problem. MDSSP J. 15 (2004), 3, 217-241. | DOI | MR

Cité par Sources :