Keywords: complex-valued neutral-type neural networks; existence and uniqueness of equilibrium; global asymptotic stability; inequality techniques; Lyapunov functional
@article{10_14736_kyb_2018_4_0844,
author = {Tan, Manchun and Xu, Desheng},
title = {Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays},
journal = {Kybernetika},
pages = {844--863},
year = {2018},
volume = {54},
number = {4},
doi = {10.14736/kyb-2018-4-0844},
mrnumber = {3863260},
zbl = {06987038},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0844/}
}
TY - JOUR AU - Tan, Manchun AU - Xu, Desheng TI - Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays JO - Kybernetika PY - 2018 SP - 844 EP - 863 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0844/ DO - 10.14736/kyb-2018-4-0844 LA - en ID - 10_14736_kyb_2018_4_0844 ER -
%0 Journal Article %A Tan, Manchun %A Xu, Desheng %T Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays %J Kybernetika %D 2018 %P 844-863 %V 54 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0844/ %R 10.14736/kyb-2018-4-0844 %G en %F 10_14736_kyb_2018_4_0844
Tan, Manchun; Xu, Desheng. Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays. Kybernetika, Tome 54 (2018) no. 4, pp. 844-863. doi: 10.14736/kyb-2018-4-0844
[1] Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnam, V.: Linear Matrix Inequality in System and Control. SIAM, Philadelphia, 1994. | DOI
[2] Cao, J. D., Chen, G. R., Li, P.: Global synchronization in an array of delayed neural networks with hybrid coupling. IEEE Trans. Syst. Man Cybern. B 38 (2008), 2, 488-498. | DOI
[3] Chen, X. F., Song, Q. K.: Global stability of complex-valued neural networks with both leakage time delay and discrete time delay on time scales. Neurocomputing 121 (2013), 254-264. | DOI
[4] Ding, X. S., Cao, J. D., Alsaedi, A., Alsaadi, F. E., Hayat, T.: Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions. Neural Netw. 90 (2017), 42-55. | DOI
[5] Du, B., Liu, Y., Cao, J. D.: Stability analysis for neutral-type impulsive neural networks with delays. Kybernetika 53 (2017), 3, 513-529. | DOI | MR
[6] Fang, T., Sun, J. T.: Further investigate the stability of complex-valued recurrent neural networks with time-delays. IEEE Trans. Neural Netw. Learn. Syst. 25 (2014), 9, 1709-1713. | DOI | MR
[7] Fang, T., Sun, J. T.: Stability of complex-valued impulsive and switching system and application to the Lu system. Nonlinear Anal. Hybrid Syst. 14 (2014), 38-46. | DOI | MR
[8] Feng, J. E., Xu, S. Y., Zou, Y.: Delay-dependent stability of neutral type neural networks with distributed delays. Neurocomputing 72 (2009), 10-12, 2576-2580. | DOI
[9] Forti, M., Tesi, A.: New conditions for global stability of neural networks with application to linear and quadratic programming problems. IEEE Trans. Circuits Syst. I 42 (1995), 354-366. | DOI | MR
[10] Gong, W. Q., Liang, J. L., Zhang, C. J., Cao, J. D.: Nonlinear measure approach for the stability analysis of complex-valued neural networks. Neural Process. Lett. 44 (2015), 539-554. | DOI
[11] Guo, R. N., Zhang, Z. Y., Liu, X. P., Lin, C.: Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays. Appl. Math. Comput. 311 (2017), 100-117. | DOI | MR
[12] Hirose, A.: Complex-Valued Neural Networks: Theories and Applications. World Scientific, Singapore 2003. | DOI | MR
[13] Hirose, A.: Recent progress in applications of complex-valued neural networks. In: Artif. Intell. Soft. Comput. II, Vol. 6114 (L. Rutkowski et al., eds.), Springer, New York 2010, pp. 42-46. | DOI
[14] Hu, J., Wang, J.: Global stability of complex-valued recurrent neural networks with time-delays. IEEE Trans. Neural Netw. Learn. Syst. 23 (2012), 6, 853-865. | DOI | MR
[15] Liao, X. F., Liu, Y. L., Wang, H. W., Huang, T. W.: Exponential estimates and exponential stability for neutral-type neural networks with multiple delays. Neurocomputing 149 (2015), 868-883. | DOI | MR
[16] Liu, X. W., Chen, T. P.: Global Exponential stability for complex-valued recurrent neural networks with asynchronous time delays. IEEE Trans. Neural Netw. Learn. Syst. 27 (2016), 3, 593-606. | DOI | MR
[17] Pan, J., Liu, X. Z., Xie, W. C.: Exponential stability of a class of complex-valued neural networks with time-varying delays. Neurocomputing 164 (2015), 293-299. | DOI
[18] Orman, Z.: New sufficient conditions for global stability of neutral-type neural networks with time delays. Neurocomputing 97 (2012), 141-148. | DOI
[19] Patan, K.: Stability analysis and the stabilization of a class of discrete-time dynamic neural networks. IEEE Trans. Neural Netw. 18 (2007), 3, 660-673. | DOI
[20] Park, J. H., Kwon, O. M.: Further results on state estimation for neural networks of neutral-type with time-varying delay. Appl. Math. Comput. 208 (2009), 1, 69-75. | DOI | MR
[21] Park, J. H., Kwon, O. M., Lee, S. M.: LMI optimization approach on stability for delayed neural networks of neutral-type. Appl. Math. Comput. 196 (2008), 1, 236-244. | DOI | MR
[22] Park, J. H., Park, C. H., Kwon, O. M., Lee, S. M.: A new stability criterion for bidirectional associative memory neural networks of neutral-type. Appl. Math. Comput. 199 (2008), 2, 716-722. | DOI | MR
[23] Shi, K. B., Zhong, S. M., Zhu, H., Liu, X. Z., Zeng, Y.: New delay-dependent stability criteria for neutral-type neural networks with mixed random time-varying delays. Neurocomputing 168 (2015), 896-907. | DOI | MR
[24] Shu, Y.J., Liu, X.G., Wang, F.X., Qiu, S.B.: Further results on exponential stability of discrete-time BAM neural networks with time-varying delays. Math. Method. Appl. Sci. 40 (2017), 11, 4014-4027. | DOI | MR
[25] Song, Q. K.: Synchronization analysis of coupled connected neural networks with mixed time delays. Neurocomputing 72 (2009), 3907-3914. | DOI
[26] Song, Q. K., Shu, H. Q., Zhao, Z. J., Liu, Y. R., Alsaadi, F. E.: Lagrange stability analysis for complex-valued neural networks with leakage delay and mixed time-varying delays. Neurocomputing 244 (2017), 33-41. | DOI
[27] Song, Q. K., Yan, H., Zhao, Z. J., Liu, Y. R.: Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays. Neural Netw. 81 (2016), 1-10. | DOI
[28] Song, Q. K., Zhao, Z. J., Liu, Y. R.: Stability analysis of complex-valued neural networks with probabilistic time-varying delays. Neurocomputing 159 (2015), 96-104. | DOI
[29] Subramanian, K., Muthukumar, P.: Global asymptotic stability of complex-valued neural networks with additive time-varying delays. Cogn. Neurodynamics 11 (2017), 3, 293-306. | DOI
[30] Tan, M. C.: Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays. Neural Process. Lett. 31 (2010), 2, 147-157. | DOI
[31] Tan, M. C.: Stabilization of coupled time-delay neural networks with nodes of different dimensions. Neural Process. Lett. 43 (2016), 1, 255-268. | DOI
[32] Tan, Y. X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Method. Appl. Sci. 39 (2016), 11, 2821-2839. | DOI | MR
[33] Tan, M. C., Xu, D. S.: Multiple $\mu$-stability analysis for memristor-based complex-valued neural networks with nonmonotonic piecewise nonlinear activation functions and unbounded time-varying delays. Neurocomputing 275 (2018), 2681-2701. | DOI
[34] Tan, M. C., Zhang, Y. N.: New sufficient conditions for global asymptotic stability of Cohen-Grossberg neural networks with time-varying delays. Nonlinear Anal. Real World Appl. 10 (2009), 2139-2145. | DOI | MR
[35] Tian, X. H., Xu, R.: Stability and Hopf bifurcation of a delayed Cohen-Grossberg neural network with diffusion. Math. Method. Appl. Sci. 40 (2017), 1, 293-305. | DOI | MR
[36] Tu, Z. W., Cao, J. D., Alsaedi, A., Alsaadi, F. E., Hayat, T.: Global lagrange stability of complex-valued neural networks of neutral type with time-varying delays. Complexity 21 (2016), S2, 438-450. | DOI | MR
[37] Wang, H. M., Duan, S. K., Huang, T. W., Wang, L. D., Li, C. D.: Exponential stability of complex-valued memristive recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28 (2017), 3, 766-771. | DOI | MR
[38] Wang, Z. Y., Huang, L. H.: Global stability analysis for delayed complex-valued BAM neural networks. Neurocomputing 173 (2016), 2083-2089. | DOI
[39] Wang, P., Li, Y. K., Ye, Y.: Almost periodic solutions for neutral-type neural networks with the delays in the leakage term on time scales. Math. Method. Appl. Sci. 39 (2016), 15, 4297-4310. | DOI | MR
[40] Wang, L., Xie, Y., Wei, Z., Peng, J.: Stability analysis and absolute synchronization of a three-unit delayed neural network. Kybernetika 51 (2015), 5, 800-813. | DOI | MR
[41] Xie, J., Kao, Y. G., Park, J.H.: $H_\infty$ performance for neutral-type Markovian switching systems with general uncertain transition rates via sliding mode control method. Nonlinear Anal. Hybrid Syst. 27 (2018), 416-436. | DOI | MR
[42] Xu, C. J., Li, P. L., Pang, Y. C.: Existence and exponential stability of almost periodic solutions for neutral-type BAM neural networks with distributed leakage delays. Math. Method. Appl. Sci. 40 (2017), 6, 2177-2196. | DOI | MR
[43] Xu, X. H., Zhang, J. Y., Shi, J. Z.: Exponential stability of complex-valued neural networks with mixed delays. Neurocomputing 128 (2014), 483-490. | DOI
[44] Zhang, H. G., Gong, D. W., Wang, Z. S.: Synchronization criteria for an array of neutral-type neural networks with hybrid coupling: a novel analysis approach. Neural Process. Lett. 35 (2012), 1, 29-45. | DOI
[45] Zhang, Z. Y., Liu, X. P., Chen, J., Guo, R. N., Zhou, S. W.: Further stability analysis for delayed complex-valued recurrent neural networks. Neurocomputing 251 (2017), 81-89. | DOI
[46] Zhang, Z. Y., Lin, C., Chen, B.: Global stability criterion for delayed complex-valued recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25 (2014), 9, 1704-1708. | DOI
[47] Zhang, Z. Q., Yu, S. H.: Global asymptotic stability for a class of complex-valued Cohen-Grossberg neural networks with time delays. Neurocomputing 171 (2016), 1158-1166. | DOI
[48] Zeng, X., Li, C. D., Huang, T. W., He, X.: Stability analysis of complex-valued impulsive systems with time delay. Appl. Math. Comput. 256 (2015), 75-82. | DOI | MR
[49] Zheng, C. D., Shan, Q. H., Zhang, H. G.: On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching. IEEE Trans. Neural Netw. Learn. Syst. 24 (2013), 800-811. | DOI
Cité par Sources :