Some limit theorems for $m$-pairwise negative quadrant dependent random variables
Kybernetika, Tome 54 (2018) no. 4, pp. 815-828
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent $p$ ($1\leq p\leq2$) for $m$-pairwise negatively quadrant dependent ($m$-PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise $m$-PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be solved easily by using the obtained inequality in this paper.
The authors first establish the Marcinkiewicz-Zygmund inequalities with exponent $p$ ($1\leq p\leq2$) for $m$-pairwise negatively quadrant dependent ($m$-PNQD) random variables. By means of the inequalities, the authors obtain some limit theorems for arrays of rowwise $m$-PNQD random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin (2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H. S. Sung, S. Lisawadi, and A. Volodin (2008)] can be solved easily by using the obtained inequality in this paper.
DOI : 10.14736/kyb-2018-4-0815
Classification : 60F15, 60F25
Keywords: $m$-pairwise negative quadrant dependent; Marcinkiewicz–Zygmund inequality; $L^r$ convergence; complete convergence
@article{10_14736_kyb_2018_4_0815,
     author = {Wu, Yongfeng and Peng, Jiangyan},
     title = {Some limit theorems for $m$-pairwise negative quadrant dependent random variables},
     journal = {Kybernetika},
     pages = {815--828},
     year = {2018},
     volume = {54},
     number = {4},
     doi = {10.14736/kyb-2018-4-0815},
     mrnumber = {3863258},
     zbl = {06987036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0815/}
}
TY  - JOUR
AU  - Wu, Yongfeng
AU  - Peng, Jiangyan
TI  - Some limit theorems for $m$-pairwise negative quadrant dependent random variables
JO  - Kybernetika
PY  - 2018
SP  - 815
EP  - 828
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0815/
DO  - 10.14736/kyb-2018-4-0815
LA  - en
ID  - 10_14736_kyb_2018_4_0815
ER  - 
%0 Journal Article
%A Wu, Yongfeng
%A Peng, Jiangyan
%T Some limit theorems for $m$-pairwise negative quadrant dependent random variables
%J Kybernetika
%D 2018
%P 815-828
%V 54
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0815/
%R 10.14736/kyb-2018-4-0815
%G en
%F 10_14736_kyb_2018_4_0815
Wu, Yongfeng; Peng, Jiangyan. Some limit theorems for $m$-pairwise negative quadrant dependent random variables. Kybernetika, Tome 54 (2018) no. 4, pp. 815-828. doi: 10.14736/kyb-2018-4-0815

[1] Baek, J. I., Ko, M. H., Kim, T. S.: On the complete convergence for weighted sums of dependent random variables under condition of weighted integrability. J. Korean Math. Soc. 45 (2008), 1101-1111. | DOI | MR

[2] Baek, J. I., Park, S. T.: Convergence of weighted sums for arrays of negatively dependent random variables and its applications. J. Stat. Plann. Inference 140 (2010), 2461-2469. | DOI | MR

[3] Cabrera, M. O., Volodin, A.: Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability. J. Math. Anal. Appl. 305 (2005), 644-658. | DOI | MR

[4] Ebrahimi, N., Ghosh, M.: Multivariate negative dependence. Commun. Stat. Theory Methods 10 (1981), 307-337. | DOI | MR

[5] Gan, S., Chen, P.: Some limit theorems for sequences of pairwise NQD random variables. Acta Math. Sci., Ser. B, Engl. Ed. 28 (2008), 269-281. | DOI | MR

[6] Gan, S., Chen, P.: Some remarks for sequences of pairwise NQD random variables. Wuhan Univ. J. Nat. Sci. 15 (2010), 467-470. | DOI | MR

[7] Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Stat. 11 (1983), 286-295. | DOI | MR

[8] Lehmann, E. L.: Some concepts of dependence. Ann. Math. Stat., 37 (1966), 1137-1153. | DOI | MR | Zbl

[9] Liang, H., Chen, Z., Su, C.: Convergence of Jamison-type weighted sums of pairwise negatively quadrant dependent random variables. Acta Math. Appl. Sin. Engl. Ser. 18 (2002), 161-168. | DOI | MR

[10] Li, R., Yang, W.: Strong convergence of pairwise NQD random sequences. J. Math. Anal. Appl. 344 (2008), 741-747. | DOI | MR

[11] Matula, P.: A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett. 15 (1992), 209-213. | DOI | MR | Zbl

[12] Meng, Y., Lin, Z.: On the weak laws of large numbers for arrays of random variables. Statist. Probab. Lett. 79 (2009), 2405-2414. | DOI | MR

[13] Nelsen, R. B.: An introduction to Copulas. Second edition. Springer, New York 2006. | DOI | MR

[14] Newman, C. M.: Asymptotic independence and limit theorems for positively and negatively dependent random variables. In: Inequalities in Statistics and Probability (Y. L. Tong, ed.), IMS Lecture Notes Monogr. Ser. 5, 1984, pp. 127-140. | DOI | MR

[15] Sung, H. S.: Convergence in $r$-mean of weighted sums of NQD random variables. Appl. Math. Lett. 26 (2013), 18-24. | DOI | MR

[16] Sung, H. S., Lisawadi, S., Volodin, A.: Weak laws of large numbers for arrays under a condition of uniform integrability. J. Korean Math. Soc. 45 (2008), 289-300. | DOI | MR

[17] Wu, Y., Rosalsky, A.: Strong convergence for $m$-pairwise negatively quadrant dependent random variables. Glasnik Matematicki 50 (2015), 245-259. | DOI | MR

[18] Wu, Q.: Convergence properties of pairwise NQD random sequences. Acta Math. Sin. Engl. Ser. 45 (2002), 617-624 (in Chinese). | MR

[19] Wu, Y., Guan, M.: Mean convergence theorems and weak laws of large numbers for weighted sums of dependent random variables. J. Math. Anal. Appl. 377 (2011), 613-623. | DOI | MR

[20] Wu, Q., Jiang, Y.: The strong law of large numbers for pairwise NQD random variables. J. Syst. Sci. Complex. 24 (2011), 347-357. | DOI | MR

[21] Wu, Y., Wang, D.: Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables. Appl. Math., Praha 57 (2012), 463-476. | DOI | MR

Cité par Sources :