Keywords: multimodal distributions; cusp model; bimodality test; reduced maximum likelihood estimation
@article{10_14736_kyb_2018_4_0798,
author = {Vo\v{r}{\'\i}\v{s}ek, Jan},
title = {Estimation and bimodality testing in the cusp model},
journal = {Kybernetika},
pages = {798--814},
year = {2018},
volume = {54},
number = {4},
doi = {10.14736/kyb-2018-4-0798},
mrnumber = {3863257},
zbl = {06987035},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0798/}
}
Voříšek, Jan. Estimation and bimodality testing in the cusp model. Kybernetika, Tome 54 (2018) no. 4, pp. 798-814. doi: 10.14736/kyb-2018-4-0798
[1] Arnold, V. I.: Catastrophe Theory. Springer-Verlag, Berlin 1992. | DOI | MR
[2] Barunik, J., Kukačka, J.: Realizing stock market crashes: stochastic cusp catastrophe model of returns under time-varying volatility. Quantitative Finance 15 (2015), 959-973. | DOI | MR
[3] Barunik, J., Vošvrda, M.: Can a stochastic cusp catastrophe model explain stock market crashes?. J. Economic Dynamics Control 33 (2009), 1824-1836. | DOI | MR
[4] Cobb, L.: Stochastic catastrophe models and multimodal distributions. Behavioral Sci. 23 (1978), 360-374. | DOI | MR
[5] Cobb, L., Watson, B.: Statistical catastrophe theory: An overview. Math. Modell. 1 (1980), 311-317. | DOI | MR
[6] Cobb, L.: Parameter estimation for the cusp catastrophe model. Behavioral Sci. 26 (1981), 75-78. | DOI
[7] Cobb, L., Koppstein, P., Chen, N. H.: Estimation and moment recursion relations for multimodal distributions of the exponential family. J. Amer. Statist. Assoc. 78 (1983), 124-130. | DOI | MR
[8] Creedy, J., Lye, J., Martin, V.: A non-linear model of the real US/UK exchange rate. Econom. Modell. 11 (1996), 669-686. | DOI
[9] Diks, C., Wang, J.: Can a stochastic cusp catastrophe model explain housing market crashes?. J. Econom. Dynamics Control 69 (2016), 68-88. | DOI
[10] Fernandes, M.: Financial crashes as endogenous jumps: estimation, testing and forecasting. J. Econom. Dynamics Control 30 (2006), 111-141. | DOI | MR
[11] Grasman, R. P. P. P., Maas, H. L. J. van der, Wagenmakers, E. J.: Fitting the cusp catastrophe in R: A cusp package primer. J. Statist. Software 32 (2009), 1-28. | DOI
[12] Hartigan, J. A., Hartigan, P. M.: The dip test of unimodality. Ann. Statist. 13 (1985), 70-84. | DOI | MR
[13] Kodde, D. A., Palm, F. C.: Wald criteria for jointly testing equality and inequality restrictions. Econometrica 54 (1986), 1243-1248. | DOI | MR
[14] Koh, S. K., Fong, W. M., Chan, F.: A Cardans discriminant approach to predicting currency crashes. J. Int. Money Finance 26 (2007), 131-148. | DOI
[15] Lehman, E. L., Romano, J. P.: Testing Statistical Hypotheses. Third edition. Springer-Verlag, New York 2005. | DOI | MR
[16] Matz, A. W.: Maximum likelihood parameter estimation for the quartic exponential distribution. Technometrics 20 (1978), 475-484. | DOI
[17] Thom, R.: Structural Stability and Morpohogenesis. W. A. Benjamin, New York 1975. | MR
Cité par Sources :