Keywords: linear regression; LASSO; characteristic function; finite sample probability distribution function; Fourier-Slice theorem; Cramer–Wold theorem
@article{10_14736_kyb_2018_4_0778,
author = {Jagannath, Rakshith and Upadhye, Neelesh S.},
title = {The {LASSO} estimator: {Distributional} properties},
journal = {Kybernetika},
pages = {778--797},
year = {2018},
volume = {54},
number = {4},
doi = {10.14736/kyb-2018-4-0778},
mrnumber = {3863256},
zbl = {06987034},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0778/}
}
TY - JOUR AU - Jagannath, Rakshith AU - Upadhye, Neelesh S. TI - The LASSO estimator: Distributional properties JO - Kybernetika PY - 2018 SP - 778 EP - 797 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0778/ DO - 10.14736/kyb-2018-4-0778 LA - en ID - 10_14736_kyb_2018_4_0778 ER -
Jagannath, Rakshith; Upadhye, Neelesh S. The LASSO estimator: Distributional properties. Kybernetika, Tome 54 (2018) no. 4, pp. 778-797. doi: 10.14736/kyb-2018-4-0778
[1] Austin, C. D., Moses, R., Ash, J., Ertin, E.: On the relation between sparse reconstruction and parameter estimation with model order selection. IEEE J. Selected Topics Signal Process. 4 (2010), 3, 560-570. | DOI
[2] Babacan, S., Molina, R., Katsaggelos, A.: Bayesian compressive sensing using laplace priors. IEEE Trans. Image Process. 19 (2010), 1, 53-63. | DOI | MR
[3] Baraniuk, R., Candes, E., Nowak, R., R., M., Vetterli: Compressive sampling. IEEE Signal Processing Magazine 25 (2008), 2, 12-13. | DOI
[4] Ben-Tal, A., Nemirovskiaei, A. S.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Society for Industrial and Applied Mathematics, Philadelphia 2001. | DOI | MR
[5] Boufounos, P., Duarte, M. F., Baraniuk, R. G.: Sparse signal reconstruction from noisy compressive measurements using cross validation. In: IEEE/SP 14th Workshop on Statistical Signal Processing, 2007, pp. 299-303. | DOI | MR
[6] Candes, E.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346 (2008), 9-10, 589-592. | DOI | MR
[7] Chen, S. S., Donoho, D. L., Saunders, M. A.: Atomic decomposition by basis pursuit. SIAM Rev. 43 (2001), 1, 129-159. | DOI | MR
[8] Cuesta-Albertos, J. A., Fraiman, R., Ransford, T.: A sharp form of the Cramér-wold theorem. J. Theoret. Probab. 20 (2007), 2, 201-209. | DOI | MR
[9] Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52 (2006), 4, 1289-1306. | DOI | MR
[10] Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Statist. 32 (2004), 407-499. | DOI | MR
[11] Eldar, Y.: Generalized sure for exponential families: Applications to regularization. IEEE Trans. Signal Process. 57 (2009), 2, 471-481. | DOI | MR
[12] Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 (2001), 456, 1348-1360. | DOI | MR
[13] Grant, M., Boyd, S.: {CVX}: Matlab software for disciplined convex programming, version 2.1.
[14] Kabaila, P.: The effect of model selection on confidence regions and prediction regions. Econometr. Theory 11 (1995), 537-549. | DOI | MR
[15] Kay, S. M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Inc., Upper Saddle River, NJ 1993.
[16] Knight, K., Fu, W.: Asymptotics for lasso-type estimators. Ann. Statist. 28 (2000), 5, 1356-1378. | DOI | MR
[17] Krim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine 13 (1996), 4, 67-94. | DOI
[18] Leeb, H., Pötscher, B. M.: Model selection and inference: Facts and fiction. Econometr. Theory 21 (2005), 21-59. | DOI | MR
[19] Lockhart, R., Taylor, J., Tibshirani, R. J., Tibshirani, R.: A significance test for the lasso. Ann. Statist. 42 (2014), 2, 413-468. | DOI | MR
[20] Lopes, M. E.: Estimating unknown sparsity in compressed sensing. CoRR 2012, abs/1204.4227.
[21] Ng, R.: Fourier slice photography. ACM Trans. Graph. 24 (2005), 3, 735-744. | DOI
[22] Panahi, A., Viberg, M.: Fast candidate points selection in the lasso path. IEEE Signal Process. Lett. 19 (2012), 2, 79-82. | DOI
[23] Pötscher, B. M., Leeb, H.: On the distribution of penalized maximum likelihood estimators: The lasso, scad, and thresholding. J. Multivar. Anal. 100 (2009), 9, 2065-2082. | DOI | MR
[24] Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc., Ser. B 58 (1994), 267-288. | MR
[25] Zou, H.: The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 (2006), 476, 1418-1429. | DOI | MR
Cité par Sources :